Câu hỏi:

19/08/2025 104 Lưu

Người ta theo dõi sự thay đổi cân nặng, được tính bằng hiệu cân nặng trước và sau ba tháng áp dụng chế độ ăn kiêng của một số người cho kết quả như bảng dưới đây:

Người ta theo dõi sự thay đổi cân nặng, được tính bằng hiệu cân nặng trước và sau ba tháng áp dụng chế độ ăn kiêng của một số người cho kết quả như bảng dưới đây: (ảnh 1)

Tính số trung bình, phương sai, độ lệch chuẩn và nhận xét về sự thay đổi cân nặng của người nam và người nữ sau ba tháng áp dụng chế dộ ăn kiêng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn giá trị đại diện cho các nhóm số liệu, ta có:

Người ta theo dõi sự thay đổi cân nặng, được tính bằng hiệu cân nặng trước và sau ba tháng áp dụng chế độ ăn kiêng của một số người cho kết quả như bảng dưới đây: (ảnh 2)

Tổng số người nam là: \({n_1} = 2 + 3 + 5 + 3 + 2 = 15\).

Tổng số người nữ là: \({n_2} = 2 + 7 + 12 + 7 + 2 = 30\).

Thay đổi cân nặng trung bình của người nam là:

\({\bar x_1} = \frac{1}{{15}}[2 \cdot ( - 0,5) + 3 \cdot 0,5 + 5 \cdot 1,5 + 3 \cdot 2,5 + 2 \cdot 3,5] = 1,5(\;{\rm{kg}})\)

Thay đổi cân nặng trung bình của người nữ là:

\({\bar x_2} = \frac{1}{{30}}[2 \cdot ( - 0,5) + 7 \cdot 0,5 + 12 \cdot 1,5 + 7 \cdot 2,5 + 2 \cdot 3,5] = 1,5(\;{\rm{kg}})\)

Phương sai và độ lệch chuẩn của mẫu số liệu về thay đổi cân nặng của người nam là:

\(s_1^2 = \frac{1}{{15}}\left[ {2 \cdot {{( - 0,5)}^2} + 3 \cdot {{0,5}^2} + 5 \cdot {{1,5}^2} + 3 \cdot {{2,5}^2} + 2 \cdot {{3,5}^2}} \right] - {1,5^2} \approx {1,21^2};{s_1} \approx 1,21\)

Phương sai và độ lệch chuẩn của mẫu số liệu về thay đồi cân nặng của người nừ là:

\(s_2^2 = \frac{1}{{30}}\left[ {2 \cdot {{( - 0,5)}^2} + 7 \cdot {{0,5}^2} + 12 \cdot {{1,5}^2} + 7 \cdot {{2,5}^2} + 2 \cdot {{3,5}^2}} \right] - {1,5^2} \approx {2,06^2};{s_2} \approx 2,06.\)

Như vậy, sau ba tháng áp dụng chế độ ăn kiêng này, về trung bình sự thay đổi cân nặng của nam và nữ là như nhau. Tuy nhiên, sự biến động về thay đổi cân nặng của nữ nhiều hơn so với của nam.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng thống kê giá đóng cửa theo giá trị đại diện:
Media VietJack

Xét mẫu số liệu của cổ phiếu A:

Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_1} = \frac{{8.121 + 9.123 + 12.125 + 10.127 + 11.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_1^2\] = \[\frac{1}{{50}}\] (8 . 1212 + 9 . 1232 + 12 . 1252 + 10 . 1272 + 11 . 1292) – (125,28)2 = 7,5216.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_1} = \sqrt {S_1^2}  = \sqrt {7,5216} \]
Xét mẫu số liệu của cổ phiếu B:
Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_2} = \frac{{16.121 + 4.123 + 3.125 + 6.127 + 21.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_2^2\]=\[\frac{1}{{50}}\] (16 . 1212 + 4 . 1232 + 3 . 1252 + 6 . 1272 + 21 . 1292) – (125,48)2 = 12,4096.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_2} = \sqrt {S_2^2}  = \sqrt {12,4096} \]
Vậy nếu đánh giá độ rủi ro theo phương sai và độ lệch chuẩn thì cổ phiếu A có độ rủi ro thấp hơn cổ phiếu B.

Lời giải

a) Cỡ mẫu là n = 20.
Số trung bình của mẫu số liệu trên là: \[{\bar x_1} = \frac{{111,6 + 134,9 + ... + 114}}{{20}} = 122,755\]
Phương sai của mẫu số liệu trên là: S12 =\[\frac{1}{{20}}\] (111,62 + 134,92 + … + 1142) – 122,7552 ≈ 515,453.
Độ lệch chuẩn của mẫu số liệu trên là \[{S_1} \approx \sqrt {515,453}  \approx 22,704\]
b) Ta có bảng sau:
Media VietJack
Số trung bình của mẫu số liệu ghép nhóm là: \[{\bar x_2} = \frac{{3.89 + 6.107 + 3.125 + 5.143 + 3.161}}{{20}} = 124,1\]
Phương sai của mẫu số liệu ghép nhóm là
                                    S22 = \[\frac{1}{{20}}\] (3 . 892 + 6 . 1072 + 3 . 1252 + 5 . 1432 + 3 . 1612) – 124,12 = 566,19.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_2} \approx \sqrt {566,19}  \approx 23,795\]
c) Sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc là
\[\frac{{\left| {{S_2} - {S_1}} \right|}}{{{S_1}}} = \frac{{\left| {23,795 - 22,704} \right|}}{{22,704}} \cdot 100\%  \approx 4,805\% \]