Câu hỏi:

03/08/2025 5 Lưu

Bạn Chi rất thích nhảy hiện đại. Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn Chi được thống kê lại ở bảng sau:

Bạn Chi rất thích nhảy hiện đại. Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn Chi được thống kê lại ở bảng sau: (ảnh 1)

Tìm khoảng biến thiên, khoảng tứ phân vị, phương sai của mẫu số liệu ghép nhóm trên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Khoảng biến thiên của mẫu số liệu ghép nhóm là: \(45 - 20 = 25\) (phút)

b) Cö mẫu \(n = 18\)

Gọi \({x_1};{x_2}; \ldots ;{x_{18}}\) là mẫu số liệu gốc về thời gian tập nhảy mỗi ngày của bạn Chi được xếp theo thứ tự không giảm.

Ta có: \({x_1}; \ldots ;{x_6} \in [20;25);{x_7}; \ldots ;{x_{12}} \in [25;30);{x_{13}}; \ldots ;{x_{16}} \in [30;35);{x_{17}}; \in [35;40);{x_{18}} \in [40;45)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_5} \in [20;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 20 + \frac{{\frac{{18}}{4}}}{6}(25 - 20) = 23,75\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{14}} \in [30;35)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 30 + \frac{{\frac{{3.18}}{4} - (6 + 6)}}{4}(35 - 30) = 31,875\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 8,125\)

c) Số trung bình: \(\bar x = \frac{{6.22,5 + 6.27,5 + 4.32,5 + 37,5 + 42,5}}{{18}} \approx 28,33\)

Phương sai: \({S^2} = \frac{{{{6.22,5}^2} + {{6.27,5}^2} + {{4.32,5}^2} + {{37,5}^2} + {{42,5}^2}}}{{18}} - {28,33^2} = 31,25\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng thống kê giá đóng cửa theo giá trị đại diện:
Media VietJack

Xét mẫu số liệu của cổ phiếu A:

Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_1} = \frac{{8.121 + 9.123 + 12.125 + 10.127 + 11.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_1^2\] = \[\frac{1}{{50}}\] (8 . 1212 + 9 . 1232 + 12 . 1252 + 10 . 1272 + 11 . 1292) – (125,28)2 = 7,5216.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_1} = \sqrt {S_1^2}  = \sqrt {7,5216} \]
Xét mẫu số liệu của cổ phiếu B:
Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_2} = \frac{{16.121 + 4.123 + 3.125 + 6.127 + 21.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_2^2\]=\[\frac{1}{{50}}\] (16 . 1212 + 4 . 1232 + 3 . 1252 + 6 . 1272 + 21 . 1292) – (125,48)2 = 12,4096.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_2} = \sqrt {S_2^2}  = \sqrt {12,4096} \]
Vậy nếu đánh giá độ rủi ro theo phương sai và độ lệch chuẩn thì cổ phiếu A có độ rủi ro thấp hơn cổ phiếu B.

Lời giải

a) Ta có bảng sau:
Media VietJack
b) Xét mẫu số liệu của khu vực A: Cỡ mẫu là nA = 4 + 5 + 5 + 4 + 2 = 20.
Số trung bình của mẫu số liệu ghép nhóm là: \[{\bar x_A} = \frac{{4.5,5 + 5.6,5 + 5.7,5 + 4.8,5 + 2.9,5}}{{20}} = 7,25\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_A^2\]= \[\frac{1}{{20}}\] (4 . 5,52 + 5 . 6,52 + 5 . 7,52 + 4 . 8,52 + 2 . 9,52) – (7,25)2 = 1,5875.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_A} \approx \sqrt {1,5875} \]
Xét mẫu số liệu của khu vực B: Cỡ mẫu là nB = 3 + 6 + 5 + 5 + 1 = 20.
Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_B} = \frac{{3.5,5 + 6.6,5 + 5.7,5 + 5.8,5 + 1.9,5}}{{20}} = 7,25\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_B^2\] = \[\frac{1}{{20}}\] (3 . 5,52 + 6 . 6,52 + 5 . 7,52 + 5 . 8,52 + 1 . 9,52) – (7,25)2 = 1,2875.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_B} \approx \sqrt {1,2875} \]   
Do SA > SB nên nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì mức lương khởi điểm của công nhân khu vực B đồng đều hơn của công nhân khu vực A.