Câu hỏi:

03/08/2025 5 Lưu

Kiểm tra khối lượng của 30 bao xi măng (đơn vị: kg) được chọn ngẫu nhiên trước khi xuất xưởng cho kết quả như sau:

Kiểm tra khối lượng của 30 bao xi măng (đơn vị: kg) được chọn ngẫu nhiên trước khi xuất xưởng cho kết quả như sau: (ảnh 1)

a) Thay dấu "?" bằng số thích hợp để hoàn thiện mẫu số liệu ghép nhóm sau.

Kiểm tra khối lượng của 30 bao xi măng (đơn vị: kg) được chọn ngẫu nhiên trước khi xuất xưởng cho kết quả như sau: (ảnh 2)

b) Tính phương sai và độ lệch chuẩn của mẫu số liệu gốc và mẫu số liệu ghép nhóm. Giá trị nào là giá trị chính xác? Giá trị nào là giá trị xấp xỉ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chọn giá trị đại diện cho mẫu số liệu ta có:

Kiểm tra khối lượng của 30 bao xi măng (đơn vị: kg) được chọn ngẫu nhiên trước khi xuất xưởng cho kết quả như sau: (ảnh 3)

b) Mẫu số liệu gốc

Giá trị trung bình là:

x¯=49,5+48,9+51,4+51,1+49,3+48,7+50,8+50,7+51,2+50,2+48,8+50,6+48,7+49,8+50,9+49,6+48,8+49,2+51,3+51,2+50,7+51,4+50,4+51,1+50,1+50,0+48,6+50,5+51,2+49,6130=15043300

Phương sai

Ta có bảng sau

Kiểm tra khối lượng của 30 bao xi măng (đơn vị: kg) được chọn ngẫu nhiên trước khi xuất xưởng cho kết quả như sau: (ảnh 4)
Media VietJack

Tổng bình phương độ lệch là: \(\frac{{78461}}{{3000}}\).

Khi đó phương sai: \({s^2} = \frac{{78461}}{{3000}} \cdot \frac{1}{{30}} = \frac{{78461}}{{90000}}\).

Độ lệch chuấn là \(s = \sqrt {\frac{{78461}}{{90000}}}  \approx 0,934\).

Mẫu số liệu ghép nhóm

Chọn giá trị đại diện cho mẫu số liệu ta có:

Kiểm tra khối lượng của 30 bao xi măng (đơn vị: kg) được chọn ngẫu nhiên trước khi xuất xưởng cho kết quả như sau: (ảnh 5)

Giá trị trung bình là: \(\bar x = \frac{{48,75 \cdot 6 + 49,25 \cdot 2 + 49,75 \cdot 4 + 50,25 \cdot 4 + 50,75 \cdot 6 + 51,25 \cdot 8}}{{30}} = \frac{{3011}}{{60}}.\)

Phương sai: \({s^2} = \frac{{{{48,75}^2} \cdot 6 + {{49,25}^2} \cdot 2 + {{49,75}^2} \cdot 4 + {{50,25}^2} \cdot 4 + {{50,75}^2} \cdot 6 + {{51,25}^2} \cdot 8}}{{30}} - {\left( {\frac{{3011}}{{60}}} \right)^2} = \frac{{194}}{{225}}{\rm{. }}\)

Độ lệch chuấn: \(s = \sqrt {\frac{{194}}{{225}}}  \approx 0,929\).

Giá trị mẫu số liệu gốc là chính xác, giá trị mẫu số liệu ghép nhóm là xấp xỉ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng thống kê giá đóng cửa theo giá trị đại diện:
Media VietJack

Xét mẫu số liệu của cổ phiếu A:

Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_1} = \frac{{8.121 + 9.123 + 12.125 + 10.127 + 11.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_1^2\] = \[\frac{1}{{50}}\] (8 . 1212 + 9 . 1232 + 12 . 1252 + 10 . 1272 + 11 . 1292) – (125,28)2 = 7,5216.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_1} = \sqrt {S_1^2}  = \sqrt {7,5216} \]
Xét mẫu số liệu của cổ phiếu B:
Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_2} = \frac{{16.121 + 4.123 + 3.125 + 6.127 + 21.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_2^2\]=\[\frac{1}{{50}}\] (16 . 1212 + 4 . 1232 + 3 . 1252 + 6 . 1272 + 21 . 1292) – (125,48)2 = 12,4096.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_2} = \sqrt {S_2^2}  = \sqrt {12,4096} \]
Vậy nếu đánh giá độ rủi ro theo phương sai và độ lệch chuẩn thì cổ phiếu A có độ rủi ro thấp hơn cổ phiếu B.

Lời giải

a) Ta có bảng sau:
Media VietJack
b) Xét mẫu số liệu của khu vực A: Cỡ mẫu là nA = 4 + 5 + 5 + 4 + 2 = 20.
Số trung bình của mẫu số liệu ghép nhóm là: \[{\bar x_A} = \frac{{4.5,5 + 5.6,5 + 5.7,5 + 4.8,5 + 2.9,5}}{{20}} = 7,25\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_A^2\]= \[\frac{1}{{20}}\] (4 . 5,52 + 5 . 6,52 + 5 . 7,52 + 4 . 8,52 + 2 . 9,52) – (7,25)2 = 1,5875.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_A} \approx \sqrt {1,5875} \]
Xét mẫu số liệu của khu vực B: Cỡ mẫu là nB = 3 + 6 + 5 + 5 + 1 = 20.
Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_B} = \frac{{3.5,5 + 6.6,5 + 5.7,5 + 5.8,5 + 1.9,5}}{{20}} = 7,25\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_B^2\] = \[\frac{1}{{20}}\] (3 . 5,52 + 6 . 6,52 + 5 . 7,52 + 5 . 8,52 + 1 . 9,52) – (7,25)2 = 1,2875.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_B} \approx \sqrt {1,2875} \]   
Do SA > SB nên nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì mức lương khởi điểm của công nhân khu vực B đồng đều hơn của công nhân khu vực A.