Câu hỏi:

19/08/2025 35 Lưu

Trong bài thực hành đo hiệu điện thế của mạch điện, An và Bình đã dùng hai vôn kế khác nhau để đo, mỗi bạn tiến hành đo 10 lần cho kết quả như sau:

Trong bài thực hành đo hiệu điện thế của mạch điện, An và Bình đã dùng hai vôn kế khác nhau để đo, mỗi bạn tiến hành đo 10 lần cho kết quả như sau: (ảnh 1)

Tính độ lệch chuẩn của các mẫu số liệu ghép nhóm cho kết quả đo của An và Bình. Từ đó kết luận xem vôn kế của bạn nào cho kết quả đo ổn định hơn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn giá trị đại diện cho mẫu số liệu ta có:

Trong bài thực hành đo hiệu điện thế của mạch điện, An và Bình đã dùng hai vôn kế khác nhau để đo, mỗi bạn tiến hành đo 10 lần cho kết quả như sau: (ảnh 2)

Hiệu điện thế trung bình của An đo là: \(\overline {{x_1}}  = \frac{{3,875 \cdot 1 + 3,925 \cdot 6 + 3,975 \cdot 2 + 4,025.1}}{{10}} = 3,94.{\rm{ }}\)

Hiệu điện thế trung bình của Bình đo là: \(\overline {{x_2}}  = \frac{{3,875.1 + 3,925.3 + 3,975.4 + 4,025.2}}{{10}} = 3,96\)

Phương sai và độ lệch chuẩn về mẫu số liệu ghép nhóm của An đo là:

\(s_1^2 = \frac{{{{3,875}^2} \cdot 1 + {{3,925}^2} \cdot 6 + {{3,975}^2} \cdot 2 + {{4,025}^2} \cdot 1}}{{10}} - {3,94^2} = 1,525 \cdot {10^{ - 3}}{\rm{. }}\)Suy ra \({s_1} = \sqrt {1,525 \cdot {{10}^{ - 3}}}  \approx 0,039\).

Phương sai và độ lệch chuẩn về mẫu số liệu ghép nhóm của Bình đo là:

\(s_2^2 = \frac{{{{3,875}^2} \cdot 1 + {{3,925}^2} \cdot 3 + {{3,975}^2} \cdot 4 + {{4,025}^2} \cdot 2}}{{10}} - {3,96^2} = 2,025 \cdot {10^{ - 3}}{\rm{. }}\)Suy ra \({s_2} = \sqrt {2,025 \cdot {{10}^{ - 3}}}  = 0,045\).

Dựa vào kết quả tính được của độ lệch chuẩn, ta thấy vôn kế của An cho kết quảồn định hơn vôn kế của Bình.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng thống kê giá đóng cửa theo giá trị đại diện:
Media VietJack

Xét mẫu số liệu của cổ phiếu A:

Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_1} = \frac{{8.121 + 9.123 + 12.125 + 10.127 + 11.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_1^2\] = \[\frac{1}{{50}}\] (8 . 1212 + 9 . 1232 + 12 . 1252 + 10 . 1272 + 11 . 1292) – (125,28)2 = 7,5216.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_1} = \sqrt {S_1^2}  = \sqrt {7,5216} \]
Xét mẫu số liệu của cổ phiếu B:
Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_2} = \frac{{16.121 + 4.123 + 3.125 + 6.127 + 21.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_2^2\]=\[\frac{1}{{50}}\] (16 . 1212 + 4 . 1232 + 3 . 1252 + 6 . 1272 + 21 . 1292) – (125,48)2 = 12,4096.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_2} = \sqrt {S_2^2}  = \sqrt {12,4096} \]
Vậy nếu đánh giá độ rủi ro theo phương sai và độ lệch chuẩn thì cổ phiếu A có độ rủi ro thấp hơn cổ phiếu B.

Lời giải

a) Cỡ mẫu là n = 20.
Số trung bình của mẫu số liệu trên là: \[{\bar x_1} = \frac{{111,6 + 134,9 + ... + 114}}{{20}} = 122,755\]
Phương sai của mẫu số liệu trên là: S12 =\[\frac{1}{{20}}\] (111,62 + 134,92 + … + 1142) – 122,7552 ≈ 515,453.
Độ lệch chuẩn của mẫu số liệu trên là \[{S_1} \approx \sqrt {515,453}  \approx 22,704\]
b) Ta có bảng sau:
Media VietJack
Số trung bình của mẫu số liệu ghép nhóm là: \[{\bar x_2} = \frac{{3.89 + 6.107 + 3.125 + 5.143 + 3.161}}{{20}} = 124,1\]
Phương sai của mẫu số liệu ghép nhóm là
                                    S22 = \[\frac{1}{{20}}\] (3 . 892 + 6 . 1072 + 3 . 1252 + 5 . 1432 + 3 . 1612) – 124,12 = 566,19.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_2} \approx \sqrt {566,19}  \approx 23,795\]
c) Sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc là
\[\frac{{\left| {{S_2} - {S_1}} \right|}}{{{S_1}}} = \frac{{\left| {23,795 - 22,704} \right|}}{{22,704}} \cdot 100\%  \approx 4,805\% \]