Câu hỏi:

03/08/2025 6 Lưu

Bảng sau thống kê lại tổng số giờ nắng trong tháng 6 của các năm từ 2002 đến 2021 tại hai trạm quan trắc đặt ở Nha Trang và Quy Nhơn.

Bảng sau thống kê lại tổng số giờ nắng trong tháng 6 của các năm từ 2002 đến 2021 tại hai trạm quan trắc đặt ở Nha Trang và Quy Nhơn.  (ảnh 1)

a) Nếu so sánh theo khoảng tứ phân vị thì số giờ nắng trong tháng 6 của địa phương nào đồng đều hơn?

b) Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 6 của địa phương nào đồng đều hơn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Cỡ mẫu: \(n = 20\)

Gọi \({x_1};{x_2}; \ldots ;{x_{20}}\) là mẫu số liệu gốc về số giờ nắng trong tháng 6 trong 20 năm của Nha Trang được xếp theo thứ tự không giảm.

Ta có: \({x_1} \in [130;160);{x_2} \in [160;190);{x_3} \in [190;220);{x_4}; \ldots ;{x_{11}} \in [220;250);{x_{12}}; \ldots ;{x_{18}} \in [250;280)\); \({x_{19}};{x_{20}} \in [280;310)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_5} + {x_6}} \right) \in [220;250)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 220 + \frac{{\frac{{20}}{4} - (1 + 1 + 1)}}{8}(250 - 220) = 227,5\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right) \in [250;280)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 250 + \frac{{\frac{{3.20}}{4} - (1 + 1 + 1 + 8)}}{7}(280 - 250) = \frac{{1870}}{7}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 39,64\)

Gọi \({y_1};{y_2}; \ldots ;{y_{50}}\) là mẫu số liệu gốc về số giờ nắng trong tháng 6 trong 20 năm của \({\rm{Quy}}\) Nhơn được xếp theo thứ tự không giảm.

Ta có: \({y_1}; \in [160;190);{y_2};{y_3} \in [190;220);{y_4}; \ldots ;{y_7} \in [220;250);{y_8}; \ldots ;{y_{17}} \in [250;280)\);

\({y_{4 = 18}}; \ldots ;{y_{20}} \in [280;310)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_5} + {y_6}} \right) \in [220;250)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime  = 220 + \frac{{\frac{{20}}{4} - (1 + 2)}}{4}(250 - 220) = 235\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_{15}} + {y_{16}}} \right) \in [250;280)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime  = 250 + \frac{{\frac{{3.20}}{4} - (1 + 2 + 4)}}{{10}}(280 - 250) = 274\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}^\prime  = {Q_3}^\prime  - {Q_1}^\prime  = 39\)

Vậy nếu so sánh theo khoảng tứ phân vị thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn

b) Xét số liệu của Nha Trang:

Số trung bình: \(\overline {{x_X}}  = \frac{{1.145 + 1.175 + 1.205 + 8.235 + 7.265 + 2.295}}{{20}} = 242,5\)

Độ lệch chuần: \({\sigma _X} = \sqrt {\frac{{{{1.145}^2} + {{1.175}^2} + {{1.205}^2} + {{8.235}^2} + {{7.265}^2} + {{2.295}^2}}}{{20}} - {{242,5}^2}}  \approx 35,34\)

Xét số liệu của Quy Nhơn:

Số trung bình: \(\overline {{x_Y}}  = \frac{{1.175 + 2.205 + 4.235 + 10.265 + 3.295}}{{20}} = 253\)

Độ lệch chuẫn: \({\sigma _Y} = \sqrt {\frac{{{{1.175}^2} + {{2.205}^2} + {{4.235}^2} + {{10.265}^2} + {{3.295}^2}}}{{20}} - {{253}^2}}  \approx 30,59\)

Vậy nếu so sánh theo độ lệch chuần thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng thống kê giá đóng cửa theo giá trị đại diện:
Media VietJack

Xét mẫu số liệu của cổ phiếu A:

Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_1} = \frac{{8.121 + 9.123 + 12.125 + 10.127 + 11.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_1^2\] = \[\frac{1}{{50}}\] (8 . 1212 + 9 . 1232 + 12 . 1252 + 10 . 1272 + 11 . 1292) – (125,28)2 = 7,5216.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_1} = \sqrt {S_1^2}  = \sqrt {7,5216} \]
Xét mẫu số liệu của cổ phiếu B:
Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_2} = \frac{{16.121 + 4.123 + 3.125 + 6.127 + 21.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_2^2\]=\[\frac{1}{{50}}\] (16 . 1212 + 4 . 1232 + 3 . 1252 + 6 . 1272 + 21 . 1292) – (125,48)2 = 12,4096.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_2} = \sqrt {S_2^2}  = \sqrt {12,4096} \]
Vậy nếu đánh giá độ rủi ro theo phương sai và độ lệch chuẩn thì cổ phiếu A có độ rủi ro thấp hơn cổ phiếu B.

Lời giải

a) Ta có bảng sau:
Media VietJack
b) Xét mẫu số liệu của khu vực A: Cỡ mẫu là nA = 4 + 5 + 5 + 4 + 2 = 20.
Số trung bình của mẫu số liệu ghép nhóm là: \[{\bar x_A} = \frac{{4.5,5 + 5.6,5 + 5.7,5 + 4.8,5 + 2.9,5}}{{20}} = 7,25\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_A^2\]= \[\frac{1}{{20}}\] (4 . 5,52 + 5 . 6,52 + 5 . 7,52 + 4 . 8,52 + 2 . 9,52) – (7,25)2 = 1,5875.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_A} \approx \sqrt {1,5875} \]
Xét mẫu số liệu của khu vực B: Cỡ mẫu là nB = 3 + 6 + 5 + 5 + 1 = 20.
Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_B} = \frac{{3.5,5 + 6.6,5 + 5.7,5 + 5.8,5 + 1.9,5}}{{20}} = 7,25\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_B^2\] = \[\frac{1}{{20}}\] (3 . 5,52 + 6 . 6,52 + 5 . 7,52 + 5 . 8,52 + 1 . 9,52) – (7,25)2 = 1,2875.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_B} \approx \sqrt {1,2875} \]   
Do SA > SB nên nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì mức lương khởi điểm của công nhân khu vực B đồng đều hơn của công nhân khu vực A.