Bảng sau thống kê lại tổng số giờ nắng trong tháng 6 của các năm từ 2002 đến 2021 tại hai trạm quan trắc đặt ở Nha Trang và Quy Nhơn.

a) Nếu so sánh theo khoảng tứ phân vị thì số giờ nắng trong tháng 6 của địa phương nào đồng đều hơn?
b) Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 6 của địa phương nào đồng đều hơn?
Quảng cáo
Trả lời:
a) Cỡ mẫu: \(n = 20\)
Gọi \({x_1};{x_2}; \ldots ;{x_{20}}\) là mẫu số liệu gốc về số giờ nắng trong tháng 6 trong 20 năm của Nha Trang được xếp theo thứ tự không giảm.
Ta có: \({x_1} \in [130;160);{x_2} \in [160;190);{x_3} \in [190;220);{x_4}; \ldots ;{x_{11}} \in [220;250);{x_{12}}; \ldots ;{x_{18}} \in [250;280)\); \({x_{19}};{x_{20}} \in [280;310)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_5} + {x_6}} \right) \in [220;250)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 220 + \frac{{\frac{{20}}{4} - (1 + 1 + 1)}}{8}(250 - 220) = 227,5\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right) \in [250;280)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 250 + \frac{{\frac{{3.20}}{4} - (1 + 1 + 1 + 8)}}{7}(280 - 250) = \frac{{1870}}{7}\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 39,64\)
Gọi \({y_1};{y_2}; \ldots ;{y_{50}}\) là mẫu số liệu gốc về số giờ nắng trong tháng 6 trong 20 năm của \({\rm{Quy}}\) Nhơn được xếp theo thứ tự không giảm.
Ta có: \({y_1}; \in [160;190);{y_2};{y_3} \in [190;220);{y_4}; \ldots ;{y_7} \in [220;250);{y_8}; \ldots ;{y_{17}} \in [250;280)\);
\({y_{4 = 18}}; \ldots ;{y_{20}} \in [280;310)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_5} + {y_6}} \right) \in [220;250)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime = 220 + \frac{{\frac{{20}}{4} - (1 + 2)}}{4}(250 - 220) = 235\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_{15}} + {y_{16}}} \right) \in [250;280)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime = 250 + \frac{{\frac{{3.20}}{4} - (1 + 2 + 4)}}{{10}}(280 - 250) = 274\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}^\prime = {Q_3}^\prime - {Q_1}^\prime = 39\)
Vậy nếu so sánh theo khoảng tứ phân vị thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn
b) Xét số liệu của Nha Trang:
Số trung bình: \(\overline {{x_X}} = \frac{{1.145 + 1.175 + 1.205 + 8.235 + 7.265 + 2.295}}{{20}} = 242,5\)
Độ lệch chuần: \({\sigma _X} = \sqrt {\frac{{{{1.145}^2} + {{1.175}^2} + {{1.205}^2} + {{8.235}^2} + {{7.265}^2} + {{2.295}^2}}}{{20}} - {{242,5}^2}} \approx 35,34\)
Xét số liệu của Quy Nhơn:
Số trung bình: \(\overline {{x_Y}} = \frac{{1.175 + 2.205 + 4.235 + 10.265 + 3.295}}{{20}} = 253\)
Độ lệch chuẫn: \({\sigma _Y} = \sqrt {\frac{{{{1.175}^2} + {{2.205}^2} + {{4.235}^2} + {{10.265}^2} + {{3.295}^2}}}{{20}} - {{253}^2}} \approx 30,59\)
Vậy nếu so sánh theo độ lệch chuần thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét mẫu số liệu của cổ phiếu A:
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.