Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.
a) Hãy xác định giá trị đại diện cho mỗi nhóm và lập bảng tần số ghép nhóm cho mẫu số liệu trên.
b) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường nào có điểm trung bình đồng đều hơn?
c) Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh trường nào có điểm trung bình đồng đều hơn?
Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.

a) Hãy xác định giá trị đại diện cho mỗi nhóm và lập bảng tần số ghép nhóm cho mẫu số liệu trên.
b) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường nào có điểm trung bình đồng đều hơn?
c) Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh trường nào có điểm trung bình đồng đều hơn?
Quảng cáo
Trả lời:
a)

b) Cỡ mẫu: \({n_A} = 18\)
Gọi \({x_1};{x_2}; \ldots ;{x_{18}}\) là mẫu số liệu gốc về điểm trung bình năm học của học sinh hai trường \({\rm{A}}\) được xếp theo thứ tự không giảm.
Ta có: \({x_1}; \ldots ;{x_4} \in [5;6);{x_5}; \ldots ;{x_9} \in [6;7);{x_{10}}; \ldots ;{x_{12}} \in [7;8);{x_{12}}; \ldots ;{x_{16}} \in [8;9);{x_{17}};{x_{18}} \in [9;10)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_5} \in [6;7)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 6 + \frac{{\frac{{18}}{4} - 4}}{5}(7 - 6) = 6,1\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{14}} \in [8;9)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 8 + \frac{{\frac{{3.18}}{4} - (4 + 5 + 3)}}{4}(9 - 8) = 8,375\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 2,275\)
Cỡ mẫu: \({n_B} = 15\)
Gọi \({y_1};{y_2}; \ldots ;{y_{15}}\) là mẫu số liệu gốc về điểm trung bình năm học của học sinh hai trường \(B\) được xếp theo thứ tự không giảm.
Ta có: \({y_1};{y_2} \in [5;6);{y_3}; \ldots ;{y_7} \in [6;7);{y_8}; \ldots ;{y_{11}} \in [7;8);{y_{12}}; \ldots ;{y_{14}} \in [8;9);{y_{15}} \in [9;10)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \({y_4} \in [6;7)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime = 6 + \frac{{\frac{{15}}{4} - 2}}{5}(7 - 6) = 6,35\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{12}} \in [8;9)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime = 8 + \frac{{\frac{{3.15}}{4} - (2 + 5 + 4)}}{3}(9 - 8) = 8,08\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}^\prime = {Q_3}^\prime - {Q_1}^\prime = 1,73\)
Vậy nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường \(B\) có điểm trung bình đồng dều hơn
c) Xét số liệu của trường \({\rm{A}}\) :
Số trung bình: \(\overline {{x_x}} = \frac{{4.5,5 + 5.6,5 + 3.7,5 + 4.8,5 + 2.9,5}}{{18}} = 7,22\)
Độ lệch chuẫn: \({\sigma _x} = \sqrt {\frac{{{{4.5,5}^2} + {{5.6,5}^2} + {{3.7,5}^2} + {{4.8,5}^2} + {{2.9,5}^2}}}{{18}} - {{7,22}^2}} \approx 1,79\)
Xét số liệu của trường \({\rm{B}}\) :
Số trung bình: \(\overline {{x_Y}} = \frac{{2.5,5 + 5.6,5 + 4.7,5 + 3.8,5 + 1.9,5}}{{15}} = 7,23\)
Độ lệch chuần: \({\sigma _Y} = \sqrt {\frac{{{{2.5,5}^2} + {{5.6,5}^2} + {{4.7,5}^2} + {{3.8,5}^2} + {{1.9,5}^2}}}{{15}} - {{7,23}^2}} \approx 1,31\)
Vậy nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh trường \({\rm{B}}\) có điểm trung bình đồng đều hơn
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét mẫu số liệu của cổ phiếu A:
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.