Câu hỏi:

19/08/2025 25 Lưu

Cho hàm số \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = 3{x^2} - 4x + 1\) và \(F\left( 2 \right) = 2\). Tính \(F\left( 3 \right)\).  

Trả lời: ………………………….

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[F\left( x \right) = \int {f\left( x \right)dx = } \int {\left( {3{x^2} - 4x + 1} \right)dx = {x^3} - 2{x^2} + x + C} \]. Mà \(F\left( 2 \right) = 2\) nên suy ra \(C = 0\)

Vậy hàm số \(F\left( x \right) = {x^3} - 2{x^2} + x\). Suy ra \(F\left( 3 \right) = 12\).     

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 15

Ta có: \(T\left( x \right) = \int {T'\left( x \right){\rm{d}}x}  = \int {\left( { - 20x + 300} \right){\rm{d}}x}  =  - 10{x^2} + 300x + C,\,C \in \mathbb{R}\).

Khi người đó tăng giá cho thuê mỗi gian hàng thêm 10 triệu đồng thì doanh thu là 12 000 triệu đồng. Nên ứng với \(x = 10\) ta có \(T\left( {10} \right) = 12\,000\) suy ra

\(12000 =  - {10.10^2} + 300.10 + C \Rightarrow C = 10000\).

Vậy \(T\left( x \right) =  - 10{x^2} + 300x + 10000\). Ta có \(T\left( x \right)\) là một hàm bậc hai với hệ số \(a < 0\) và đồ thị hàm số có đỉnh là \(I\left( {15;12250} \right)\).

Vậy doanh thu cao nhất mà người đó có thể thu về là 12 250 triệu đồng và khi đó mỗi gian hàng đã tăng giá cho thuê thêm 15 triệu đồng

Lời giải

Trả lời: 11

Ta có: \(h\left( t \right) = \int {v\left( t \right){\rm{d}}t}  = \int {\left( { - 9,81t + 29,43} \right){\rm{d}}t}  =  - \frac{{9,81}}{2}{t^2} + 29,43t + C\).

Vì vật được ném lên từ độ cao 300 m nên \(h\left( 0 \right) = 300 \Rightarrow C = 300\).

Vậy \(h\left( t \right) =  - \frac{{9,81}}{2}{t^2} + 29,43t + 300\). Khi vật bắt đầu chạm đất ứng với \(h\left( t \right) = 0\).

Nên ta có: \( - \frac{{9,81}}{2}{t^2} + 29,43t + 300 = 0 \Leftrightarrow t \approx 11\) hoặc \(t \approx  - 5\).

Do \(t > 0\) nên \(t \approx 11\,\left( {\rm{s}} \right)\).