Một vật được ném lên từ độ cao 300 m với vận tốc được cho bởi công thức \(v\left( t \right) = - 9,81t + 29,43\,\left( {{\rm{m/s}}} \right)\) (Nguồn: R.Larson anh B. Edwards, Calculus 10e, Cengage). Gọi \(h\left( t \right)\,\left( {\rm{m}} \right)\) là độ cao của vật tại thời điểm \(t\left( {\rm{s}} \right)\). Sau bao lâu kể từ khi bắt đầu được ném lên thì vật đó chạm đất (làm tròn kết quả đến hàng đơn vị của mét)?
Trả lời: ………………………….
Một vật được ném lên từ độ cao 300 m với vận tốc được cho bởi công thức \(v\left( t \right) = - 9,81t + 29,43\,\left( {{\rm{m/s}}} \right)\) (Nguồn: R.Larson anh B. Edwards, Calculus 10e, Cengage). Gọi \(h\left( t \right)\,\left( {\rm{m}} \right)\) là độ cao của vật tại thời điểm \(t\left( {\rm{s}} \right)\). Sau bao lâu kể từ khi bắt đầu được ném lên thì vật đó chạm đất (làm tròn kết quả đến hàng đơn vị của mét)?
Trả lời: ………………………….
Câu hỏi trong đề: (Trả lời ngắn) 5 bài tập Nguyên hàm (có lời giải) !!
Quảng cáo
Trả lời:
Trả lời: 11
Ta có: \(h\left( t \right) = \int {v\left( t \right){\rm{d}}t} = \int {\left( { - 9,81t + 29,43} \right){\rm{d}}t} = - \frac{{9,81}}{2}{t^2} + 29,43t + C\).
Vì vật được ném lên từ độ cao 300 m nên \(h\left( 0 \right) = 300 \Rightarrow C = 300\).
Vậy \(h\left( t \right) = - \frac{{9,81}}{2}{t^2} + 29,43t + 300\). Khi vật bắt đầu chạm đất ứng với \(h\left( t \right) = 0\).
Nên ta có: \( - \frac{{9,81}}{2}{t^2} + 29,43t + 300 = 0 \Leftrightarrow t \approx 11\) hoặc \(t \approx - 5\).
Do \(t > 0\) nên \(t \approx 11\,\left( {\rm{s}} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 15
Ta có: \(T\left( x \right) = \int {T'\left( x \right){\rm{d}}x} = \int {\left( { - 20x + 300} \right){\rm{d}}x} = - 10{x^2} + 300x + C,\,C \in \mathbb{R}\).
Khi người đó tăng giá cho thuê mỗi gian hàng thêm 10 triệu đồng thì doanh thu là 12 000 triệu đồng. Nên ứng với \(x = 10\) ta có \(T\left( {10} \right) = 12\,000\) suy ra
\(12000 = - {10.10^2} + 300.10 + C \Rightarrow C = 10000\).
Vậy \(T\left( x \right) = - 10{x^2} + 300x + 10000\). Ta có \(T\left( x \right)\) là một hàm bậc hai với hệ số \(a < 0\) và đồ thị hàm số có đỉnh là \(I\left( {15;12250} \right)\).
Vậy doanh thu cao nhất mà người đó có thể thu về là 12 250 triệu đồng và khi đó mỗi gian hàng đã tăng giá cho thuê thêm 15 triệu đồngLời giải
Ta có \[F\left( x \right) = \int {f\left( x \right)dx = } \int {\left( {3{x^2} - 4x + 1} \right)dx = {x^3} - 2{x^2} + x + C} \]. Mà \(F\left( 2 \right) = 2\) nên suy ra \(C = 0\)
Vậy hàm số \(F\left( x \right) = {x^3} - 2{x^2} + x\). Suy ra \(F\left( 3 \right) = 12\).