Câu hỏi:

04/08/2025 11 Lưu

Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bằng 2a\(\widehat {ABC} = 45^\circ \). Tính \(\left| {\overrightarrow {CB} - \overrightarrow {AD} + \overrightarrow {AC} } \right|\) ta được kết quả là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có \(\left| {\overrightarrow {CB}  - \overrightarrow {AD}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB}  + \overrightarrow {DA}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB}  + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DB} } \right|\).

v (ảnh 1)

Gọi H, K là chân đường cao hạ từ A, D xuống BC.

Khi đó tam giác ABH vuông tại H. Mà \(\widehat {ABC} = 45^\circ \). Suy ra tam giác ABH vuông cân tại H.

Do đó AH = BH = 2a.

Suy ra BK = BH + HK = BH + AD = 4a.

Xét tam giác \(BDK\) vuông tại K, ta có \(BD = \sqrt {D{K^2} + B{K^2}}  = \sqrt {{{\left( {2a} \right)}^2} + {{\left( {4a} \right)}^2}}  = 2a\sqrt 5 \).

Vậy \(\left| {\overrightarrow {CB}  - \overrightarrow {AD}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {DB} } \right| = BD = 2a\sqrt 5 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c (ảnh 1)

a) Đúng. Theo quy tắc ba điểm, ta có \(\overrightarrow {RJ}  = \overrightarrow {RA}  + \overrightarrow {AJ} \).

b) Sai. Ta có \(\overrightarrow {IQ}  = \overrightarrow {IB}  + \overrightarrow {BQ} \).

c) Sai. Ta có \(\overrightarrow {PS}  = \overrightarrow {PC}  + \overrightarrow {CS} \).

d) Đúng. Do \(CARS\) là hình bình hành nên \(\overrightarrow {RA}  = \overrightarrow {SC} \).

Do \(ABIJ\) là hình bình hành nên \(\overrightarrow {AJ}  =  - \overrightarrow {IB} \).

Khi đó, \(\overrightarrow {RJ}  = \overrightarrow {RA}  + \overrightarrow {AJ}  = \overrightarrow {SC}  - \overrightarrow {IB} \).

Do \(BCPQ\) là hình bình hành nên \(\overrightarrow {BQ}  = \overrightarrow {CP} \).

Khi đó, \(\overrightarrow {IQ}  = \overrightarrow {IB}  + \overrightarrow {BQ}  = \overrightarrow {IB}  + \overrightarrow {CP} \).

Vậy ta có \(\overrightarrow {RJ}  + \overrightarrow {IQ}  + \overrightarrow {PS} \)\[ = \left( {\overrightarrow {SC}  - \overrightarrow {IB} } \right) + \left( {\overrightarrow {IB}  + \overrightarrow {CP} } \right) + \left( {\overrightarrow {PC}  + \overrightarrow {CS} } \right)\]\(\)

\( = \left( {\overrightarrow {SC}  + \overrightarrow {CS} } \right) + \left( {\overrightarrow {IB}  - \overrightarrow {IB} } \right) + \left( {\overrightarrow {CP}  + \overrightarrow {PC} } \right) = \overrightarrow 0 \).

Vậy \(\overrightarrow {RJ}  + \overrightarrow {IQ}  + \overrightarrow {PS}  = \vec 0\).

Lời giải

Vật đứng yên nên ba lực đã cho cân bằng. Khi đó ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow 0 \).

Suy ra \[\overrightarrow {{F_3}}  =  - \left( {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right)\].

n (ảnh 2)

Dựng hình bình hành \[AMBN\]. Ta có \[ - \overrightarrow {{F_1}}  - \overrightarrow {{F_2}}  =  - \overrightarrow {MA}  - \overrightarrow {MB}  =  - \overrightarrow {MN} \].

Suy ra \[\left| {\overrightarrow {{F_3}} } \right| = \left| { - \overrightarrow {MN} } \right| = MN = \frac{{2\sqrt 3 MA}}{2} = 25\sqrt 3 \] (N). Vậy \(a = 25\).

Đáp án: 25.

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP