Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bằng 2a và \(\widehat {ABC} = 45^\circ \). Tính \(\left| {\overrightarrow {CB} - \overrightarrow {AD} + \overrightarrow {AC} } \right|\) ta được kết quả là:
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có \(\left| {\overrightarrow {CB} - \overrightarrow {AD} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} + \overrightarrow {DA} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DB} } \right|\).

Gọi H, K là chân đường cao hạ từ A, D xuống BC.
Khi đó tam giác ABH vuông tại H. Mà \(\widehat {ABC} = 45^\circ \). Suy ra tam giác ABH vuông cân tại H.
Do đó AH = BH = 2a.
Suy ra BK = BH + HK = BH + AD = 4a.
Xét tam giác \(BDK\) vuông tại K, ta có \(BD = \sqrt {D{K^2} + B{K^2}} = \sqrt {{{\left( {2a} \right)}^2} + {{\left( {4a} \right)}^2}} = 2a\sqrt 5 \).
Vậy \(\left| {\overrightarrow {CB} - \overrightarrow {AD} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {DB} } \right| = BD = 2a\sqrt 5 \).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Ta có \[\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} + \overrightarrow {DA} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) + \left( {\overrightarrow {CD} + \overrightarrow {DA} } \right) = \overrightarrow {AC} + \overrightarrow {CA} = \overrightarrow {AA} = \overrightarrow 0 \].
Lời giải

Giả sử \(\overrightarrow {{F_1}} = \overrightarrow {OA} \), \(\overrightarrow {{F_2}} = \overrightarrow {OB} \).
Theo quy tắc hình bình hành, suy ra \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {OC} \), như hình vẽ.
Ta có \(\widehat {AOB} = 60^\circ \), \(OA = OB = 50\), nên tam giác \(OAB\) đều, suy ra \(OC = 50\sqrt 3 \).
Vậy \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {OC} } \right| = 50\sqrt 3 \,\,({\rm{N}}) \approx 86,6\,\,{\rm{(N)}}\).
Đáp án: 86,6.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
