Câu hỏi:

19/08/2025 24 Lưu

Phần III. Trắc nghiệm trả lời ngắn

Có hai lực \(\overrightarrow {{F_1}} \), \(\overrightarrow {{F_2}} \) cùng tác động vào một vật đứng tại điểm \(O\), biết hai lực \(\overrightarrow {{F_1}} \), \(\overrightarrow {{F_2}} \) đều có cường độ là \(50\,\,\left( {\rm{N}} \right)\) và chúng hợp với nhau một góc \(60^\circ \). Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu Newton (làm tròn kết quả đến hàng phần mười)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu Newton (làm tròn kết quả đến hàng phần mười)? (ảnh 1)

Giả sử \(\overrightarrow {{F_1}}  = \overrightarrow {OA} \), \(\overrightarrow {{F_2}}  = \overrightarrow {OB} \).

Theo quy tắc hình bình hành, suy ra \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {OC} \), như hình vẽ.

Ta có \(\widehat {AOB} = 60^\circ \), \(OA = OB = 50\), nên tam giác \(OAB\) đều, suy ra \(OC = 50\sqrt 3 \).

Vậy \(\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {OC} } \right| = 50\sqrt 3 \,\,({\rm{N}}) \approx 86,6\,\,{\rm{(N)}}\).

Đáp án: 86,6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c (ảnh 1)

a) Đúng. Ta có \(\left\{ \begin{array}{l}AB = AD\\\widehat {BAD} = 60^\circ \end{array} \right. \Rightarrow \Delta ABD\) đều cạnh a \( \Rightarrow AO = \frac{{a\sqrt 3 }}{2}\).

b) Sai. Ta có \(\left| {\overrightarrow {AB}  + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AC} } \right| = AC = 2AO\)\( = a\sqrt 3 \).

c) Đúng. Ta có \(\left| {\overrightarrow {BA}  - \overrightarrow {BC} } \right| = \left| {\overrightarrow {CA} } \right| = CA = a\sqrt 3 \).

d) Đúng. Đặt \(\overrightarrow {AC}  = \overrightarrow F \), ta có \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}} \) và \(\left| {\overrightarrow F } \right| = 2\sqrt 3  \cdot \sqrt 3  = 6\,\,{\rm{(N)}}\).

Do A ở vị trí cân bằng nên hai lực \(\overrightarrow F \) và \(\overrightarrow {{F_3}} \) có cùng cường độ và ngược hướng.

Vậy cường độ lực \(\overrightarrow {{F_3}} \) bằng \(\left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow F } \right| = 6\,\,{\rm{(N)}}\).

Lời giải

Ta có tổng lực tác dụng lên vật: \({\vec F_1} + {\vec F_2} = \overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow {MC} \) (Với \(C\) là điểm sao cho \(AMBC\) là hình bình hành).

Khi đó cường độ lực tác dụng lên vật: \(\left| {{{\vec F}_1} + {{\vec F}_2}} \right| = \left| {\overrightarrow {MC} } \right| = MC\).

Ta có: \(MA = \left| {\overrightarrow {MA} } \right| = \left| {{{\vec F}_1}} \right| = 400\;{\rm{N}}\), \[MB = \left| {\overrightarrow {MB} } \right| = \left| {{{\vec F}_2}} \right| = 300\;{\rm{N}}\].

Mặt khác, do \(\widehat {AMB} = 90^\circ \) nên \(AMBC\) là hình chữ nhật.

Khi đó \(MC = \sqrt {M{A^2} + M{B^2}}  = \sqrt {{{400}^2} + {{300}^2}}  = 500\,\,{\rm{(N)}}\).

Đáp án: 500.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP