Trong không gian với hệ tọa độ \[Oxyz\], cho mặt phẳng \(\left( P \right):2x + 2y - z - 1 = 0\). Mặt phẳng nào sau đây song song với \(\left( P \right)\) và cách \(\left( P \right)\) một khoảng bằng 3? Mệnh đề nào sau đây đúng và mệnh đề nào sai?
Quảng cáo
Trả lời:
Chọn C
Mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {0;0; - 1} \right)\) và có một vectơ pháp tuyến \(\overrightarrow n = \left( {2;2; - 1} \right)\).
Mặt phẳng \(\left( Q \right)\) song song với \(\left( P \right)\) và cách \(\left( P \right)\) một khoảng bằng 3 nên có dạng \(\left( Q \right):2x + 2y - z + d = 0,\,\,\left( {d \ne - 1} \right)\).
Mặt khác ta có \(d\left( {M,\left( Q \right)} \right) = 3 \Leftrightarrow \frac{{\left| {1 + d} \right|}}{{\sqrt {4 + 4 + 1} }} = 3 \Leftrightarrow \left| {d + 1} \right| = 9 \Leftrightarrow \left[ \begin{array}{l}d = 8\\d = - 10\end{array} \right.\) (thỏa mãn).
Do đó \(\left( Q \right):2x + 2y - z + 8 = 0\) hoặc \(\left( Q \right):2x + 2y - z - 10 = 0\).
Trong không gian \[Oxyz\], cho ba điểm \[A\left( {2;0;0} \right)\], \[B\left( {0;3;0} \right)\], \[C\left( {0;0; - 1} \right)\]. Phương trình của mặt phẳng \[\left( P \right)\] qua \[D\left( {1;1;1} \right)\]và song song với mặt phẳng \[\left( {ABC} \right)\] là
A. \[2x + 3y - 6z + 1 = 0\].
B. \[3x + 2y - 6z + 1 = 0\].
C. \[3x + 2y - 5z = 0\].
D. \[6x + 2y - 3z - 5 = 0\].
Chọn B
Phương trình đoạn chắn của mặt phẳng \(\left( {ABC} \right)\) là: \(\frac{x}{2} + \frac{y}{3} + \frac{z}{{ - 1}} = 1\).
Mặt phẳng \[\left( P \right)\] song song với mặt phẳng \[\left( {ABC} \right)\] nên
\[\left( P \right)\,:\]\(\frac{1}{2}x + \frac{1}{3}y - z + m = 0\,\,\,\left( {m \ne - 1} \right)\).
Do \[D\left( {1;1;1} \right) \in \left( P \right)\]có: \(\frac{1}{2}.1 + \frac{1}{3}.1 - 1 + m = 0\,\,\, \Leftrightarrow m - \frac{1}{6} = 0 \Leftrightarrow m = \frac{1}{6}\).
Vậy \(\left( P \right):\,\frac{1}{2}x + \frac{1}{3}y - z + \frac{1}{6} = 0\,\,\, \Leftrightarrow 3x + 2y - 6z + 1 = 0\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
Giả sử
Khi đó mặt phẳng () có dạng:
Do
Ta có:
Do là trực tâm tam giác
nên:
Thay vào
ta có:
Do đó
Lời giải
Chọn B
Hình chiếu của \(SB\) trên mặt phẳng \(\left( {ABCD} \right)\) là \(AB\) \( \Rightarrow \) Góc giữa \(SB\) và mặt đáy là góc giữa \[SB\] và \(AB\) và bằng góc \(\widehat {SBA} = {45^{\rm{o}}}\).
Tam giác \(SAB\) vuông cân tại \(A\) \( \Rightarrow SA = 2a\).
Chọn hệ trục tọa độ như hình vẽ ta có: \(A\left( {0;0;0} \right)\), \(B\left( {0;2a;0} \right)\), \(C\left( {a;a;0} \right)\), \[D\left( {a;0;0} \right)\], \(S\left( {0;0;2a} \right)\), \(E\left( {\frac{a}{2};0;a} \right)\).
\[\overrightarrow {AC} = \left( {a;a;0} \right)\], \(\overrightarrow {AE} = \left( {\frac{a}{2};0;a} \right)\)\( \Rightarrow \overrightarrow {AC} \wedge \overrightarrow {A{\rm{E}}} = \left( {{a^2}; - {a^2}; - \frac{{{a^2}}}{2}} \right)\)
\( \Rightarrow \) mặt phẳng \(\left( {ACE} \right)\) có véctơ pháp tuyến \(\overrightarrow n = \left( {2; - 2; - 1} \right)\)\( \Rightarrow \left( {ACE} \right):2x - 2y - z = 0\).
Vậy \(d\left( {B,\left( {ACE} \right)} \right) = \frac{{\left| {2.2a} \right|}}{{\sqrt {4 + 4 + 1} }} = \frac{{4a}}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.