Trong không gian \(Oxyz,\) cho điểm \(M(3;2; - 1)\) và mặt phẳng \((P):x + z - 2 = 0.\) Đường thẳng đi qua \(M\) và vuông góc với \((P)\) có phương trình là
Quảng cáo
Trả lời:

Chọn A
Ta có mặt phẳng \((P):x + z - 2 = 0\)
\( \Rightarrow \) Mặt phẳng \(\left( P \right)\) có véc tơ pháp tuyến là \(\overrightarrow {{n_{\left( P \right)}}} = \left( {1;0;1} \right)\)
Gọi đường thẳng cần tìm là \(\Delta \). Vì đường thẳng \(\Delta \) vuông góc với \(\left( P \right)\)nên véc tơ pháp tuyến của mặt phẳng \(\left( P \right)\) là véc tơ chỉ phương của đường thẳng \(\Delta \).
\( \Rightarrow \overrightarrow {{u_\Delta }} = \overrightarrow {{n_{\left( P \right)}}} = \left( {1;0;1} \right)\)
Vậy phương trình đường thẳng \(\Delta \) đi qua \(M(3;2; - 1)\) và có véc tơ chỉ phương \(\overrightarrow {{u_\Delta }} = \left( {1;0;1} \right)\)là:
\[\left\{ \begin{array}{l}x = 3 + t\\y = 2\\z = - 1 + t\end{array} \right..\]
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
\({d_1}:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 2}}{{ - 2}}\)\( \Rightarrow \overrightarrow {{u_1}} = \left( {2;1; - 2} \right)\); \({d_2}:\frac{{x + 2}}{{ - 2}} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\)\( \Rightarrow \overrightarrow {{u_2}} = \left( { - 2; - 1;2} \right)\)
\(\overrightarrow {{u_1}} = - \overrightarrow {{u_2}} \Rightarrow {d_1}//{d_2} \vee {d_1} \equiv {d_2}\)
Điểm \(M\left( {1;0; - 2} \right) \in {{\rm{d}}_1}\); \(M \notin {d_2}\) nên\({d_1}//{d_2}\)
Lời giải
Chọn C
\[(S):{(x - 1)^2} + {(y + 3)^2} + {(z - 2)^2} = 1\]có VTCP \[\Delta {\rm{:}}\left\{ {\begin{array}{*{20}{c}}{x = 2 + t}\\{y = 1 + mt}\\{z = - 2t}\end{array}} \right.\]và đi qua \[m\]
\[\Delta \]có VTCP \[(S)\]và đi qua \[m = \frac{{15}}{2}\]
Từ đó ta có
\[m = \frac{5}{2}\]và \[m > \frac{{15}}{2}\]
Lại có \[m < \frac{5}{2}\]
Suy ra \[\frac{5}{2} < m < \frac{{15}}{2}\] chéo nhau với \[m \in \mathbb{R}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.