Câu hỏi:

10/08/2025 35 Lưu

Trong không gian \(Oxyz,\) cho điểm \(M(3;2; - 1)\) và mặt phẳng \((P):x + z - 2 = 0.\) Đường thẳng đi qua \(M\) và vuông góc với \((P)\) có phương trình là

A. \[\left\{ \begin{array}{l}x = 3 + t\\y = 2\\z =  - 1 + t\end{array} \right..\]     
B. \[\left\{ \begin{array}{l}x = 3 + t\\y = 2 + t\\z =  - 1\end{array} \right..\]          
C. \[\left\{ \begin{array}{l}x = 3 + t\\y = 2t\\z = 1 - t\end{array} \right..\]    
D. \[\left\{ \begin{array}{l}x = 3 + t\\y = 1 + 2t\\z =  - t\end{array} \right..\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có mặt phẳng \((P):x + z - 2 = 0\)

\( \Rightarrow \) Mặt phẳng \(\left( P \right)\) có véc tơ pháp tuyến là \(\overrightarrow {{n_{\left( P \right)}}}  = \left( {1;0;1} \right)\)

Gọi đường thẳng cần tìm là \(\Delta \). Vì đường thẳng \(\Delta \) vuông góc với \(\left( P \right)\)nên véc tơ pháp tuyến của mặt phẳng \(\left( P \right)\) là véc tơ chỉ phương của đường thẳng \(\Delta \).

\( \Rightarrow \overrightarrow {{u_\Delta }}  = \overrightarrow {{n_{\left( P \right)}}}  = \left( {1;0;1} \right)\)

Vậy phương trình đường thẳng \(\Delta \) đi qua \(M(3;2; - 1)\) và có véc tơ chỉ phương \(\overrightarrow {{u_\Delta }}  = \left( {1;0;1} \right)\)là:

\[\left\{ \begin{array}{l}x = 3 + t\\y = 2\\z =  - 1 + t\end{array} \right..\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

\({d_1}:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 2}}{{ - 2}}\)\( \Rightarrow \overrightarrow {{u_1}}  = \left( {2;1; - 2} \right)\); \({d_2}:\frac{{x + 2}}{{ - 2}} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\)\( \Rightarrow \overrightarrow {{u_2}}  = \left( { - 2; - 1;2} \right)\)

\(\overrightarrow {{u_1}}  =  - \overrightarrow {{u_2}}  \Rightarrow {d_1}//{d_2} \vee {d_1} \equiv {d_2}\)

Điểm \(M\left( {1;0; - 2} \right) \in {{\rm{d}}_1}\); \(M \notin {d_2}\) nên\({d_1}//{d_2}\)

Câu 2

A. song song.                      
B. trùng nhau.                     
C. chéo nhau.                     
D. cắt nhau.

Lời giải

Chọn C

\[(S):{(x - 1)^2} + {(y + 3)^2} + {(z - 2)^2} = 1\]có VTCP \[\Delta {\rm{:}}\left\{ {\begin{array}{*{20}{c}}{x = 2 + t}\\{y = 1 + mt}\\{z =  - 2t}\end{array}} \right.\]và đi qua \[m\]

\[\Delta \]có VTCP \[(S)\]và đi qua \[m = \frac{{15}}{2}\]

Từ đó ta có

\[m = \frac{5}{2}\]và \[m > \frac{{15}}{2}\]

Lại có \[m < \frac{5}{2}\]

Suy ra \[\frac{5}{2} < m < \frac{{15}}{2}\] chéo nhau với \[m \in \mathbb{R}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {{u_4}}  = \left( { - 1;2;0} \right)\)      
B. \(\overrightarrow {{u_1}}  = \left( {0;2;0} \right)\)         
C. \(\overrightarrow {{u_2}}  = \left( {1;2;0} \right)\)         
D. \(\overrightarrow {{u_3}}  = \left( {1;0;0} \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(P\left( { - 1\,;\,2\,;\,1} \right)\).    
B. \(Q\left( {1\,;\, - 2\,;\, - 1} \right)\).  
C. \(N\left( { - 1\,;\,3\,;\,2} \right)\).     
D. \(P\left( {1\,;\,2\,;\,1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. song song.                      
B. trùng nhau.                     
C. chéo nhau.                     
D. cắt nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left\{ \begin{array}{l}x = 2 + 5t\\y = 2 + 2t\\z =  - 1 - 3t\end{array} \right.\].                          
B. \[\left\{ \begin{array}{l}x = 2 + 5t\\y = 2 + 2t\\z = 1 + 3t\end{array} \right.\].                        
C. \[\left\{ \begin{array}{l}x = 2 + 5t\\y = 2 + 2t\\z = 1 - 3t\end{array} \right.\].                      
D. \[\left\{ \begin{array}{l}x = 5 + 2t\\y = 2 + 2t\\z =  - 3 + t\end{array} \right.\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP