Trong không gian với hệ trục tọa độ \[Oxyz\], cho hai điểm \(A\left( {1;1;0} \right)\), \(B\left( {0; - 1;2} \right)\). Biết rằng có hai mặt phẳng cùng đi qua hai điểm \(A\), \(O\) và cùng cách \(B\) một khoảng bằng \(\sqrt 3 \). Vectơ nào trong các vectơ dưới đây là một vectơ pháp tuyến của một trong hai mặt phẳng đó.
Quảng cáo
Trả lời:
Chọn C
Phương trình đường thẳng qua hai điểm \(A\), \(O\) có dạng \(\left\{ \begin{array}{l}x = t\\y = t\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - y = 0\\z = 0\end{array} \right.\).
Gọi \(\left( P \right)\) là mặt phẳng cùng đi qua hai điểm \(A\), \(O\) nên \(\left( P \right)\): \(m\left( {x - y} \right) + nz = 0\), \({m^2} + {n^2} > 0\). Khi đó véctơ pháp tuyến của \(\left( P \right)\) có dạng \(\overrightarrow n = \left( {m; - m;n} \right)\).
Ta có \(d\left( {B,\left( P \right)} \right) = \sqrt 3 \Leftrightarrow \frac{{\left| {m + 2n} \right|}}{{\sqrt {{m^2} + {m^2} + {n^2}} }} = \sqrt 3 \) \( \Leftrightarrow 2{m^2} - 4mn - {n^2} = 0 \Leftrightarrow \Leftrightarrow \left[ \begin{array}{l}\frac{m}{n} = 1\\\frac{m}{n} = \frac{1}{5}\end{array} \right.\).
Vậy một véctơ pháp tuyến của một trong hai mặt phẳng đó là \(\overrightarrow n = \left( {\frac{1}{5}n;\frac{{ - 1}}{5}n;n} \right) = \frac{n}{5}\left( {1; - 1;5} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Đường thẳng \({d_2}\) có véctơ chỉ phương \(\overrightarrow v = \left( {1; - 2;3} \right)\) và đi qua điểm \(N\left( { - 3;1; - 4} \right)\)
Ta có: \(\left[ {\overrightarrow v ,\overrightarrow u } \right] = \left( {4;5;2} \right) \ne \overrightarrow 0 \); \(\overrightarrow {MN} = \left( { - 4;4; - 6} \right)\); \(\left[ {\overrightarrow v ,\overrightarrow u } \right].\overrightarrow {MN} = - 16 + 20 - 12 = - 8 \ne 0\)
\( \Rightarrow \) \({d_1}\) và \({d_2}\) chéo nhau.
Mặt phẳng \(\left( P \right)\) cách đều hai đường thẳng \({d_1}\) và \({d_2}\) nên \(\left( P \right)\) nhận \(\left[ {\overrightarrow v ,\overrightarrow u } \right] = \left( {4;5;2} \right)\) làm một vectơ pháp tuyến và đi qua trung điểm \(I\left( { - 1; - 1; - 1} \right)\) của đoạn \(MN\)
Suy ra phương trình của \(\left( P \right)\): \(4\left( {x + 1} \right) + 5\left( {y + 1} \right) + 2\left( {z + 1} \right) = 0 \Leftrightarrow 4x + 5y + 2z + 11 = 0\)
\( \Rightarrow a = 4;b = 5;c = 2\) \( \Rightarrow a + 2b + 3c = 20\).
Lời giải
Chọn A
Đường thẳng \({d_1}\) đi qua \(A\left( {2;6; - 2} \right)\) và có một véc tơ chỉ phương \(\overrightarrow {{u_1}} = \left( {2; - 2;1} \right)\).
Đường thẳng \({d_2}\) có một véc tơ chỉ phương \(\overrightarrow {{u_2}} = \left( {1;3; - 2} \right)\).
Gọi \(\overrightarrow n \) là một véc tơ pháp tuyến của mặt phẳng \(\left( P \right)\). Do mặt phẳng \(\left( P \right)\) chứa \({d_1}\) và \(\left( P \right)\)song song với đường thẳng \({d_2}\) nên \[\overrightarrow n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {1;5;8} \right)\].
Vậy phương trình mặt phẳng \(\left( P \right)\) đi qua \(A\left( {2;6; - 2} \right)\) và có một véc tơ pháp tuyến \[\overrightarrow n = \left( {1;5;8} \right)\] là \(x + 5y + 8z - 16 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.