Tính góc giữa hai đường thẳng \(d\) và \({d^\prime }\) trong mỗi truoờng hợp sau:
a) d: \(\frac{{x - 7}}{3} = \frac{y}{5} = \frac{{z - 11}}{4}\) và \({d^\prime }:\frac{{x - 3}}{2} = \frac{{y + 6}}{5} = \frac{{z - 1}}{{ - 4}}\);
b) \(d:\frac{{x + 9}}{3} = \frac{{y + 4}}{6} = \frac{{z + 1}}{6}\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 9 - 10t}\\{y = 7 - 10t}\\{z = 15 + 5t}\end{array}} \right.\)
c) \(d:\left\{ {\begin{array}{*{20}{l}}{x = 23 + 2t}\\{y = 57 + t}\\{z = 19 - 5t}\end{array}} \right.\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 24 + {t^\prime }}\\{y = 6 + {t^\prime }}\\{z = {t^\prime }}\end{array}} \right.\)
Tính góc giữa hai đường thẳng \(d\) và \({d^\prime }\) trong mỗi truoờng hợp sau:
a) d: \(\frac{{x - 7}}{3} = \frac{y}{5} = \frac{{z - 11}}{4}\) và \({d^\prime }:\frac{{x - 3}}{2} = \frac{{y + 6}}{5} = \frac{{z - 1}}{{ - 4}}\);
b) \(d:\frac{{x + 9}}{3} = \frac{{y + 4}}{6} = \frac{{z + 1}}{6}\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 9 - 10t}\\{y = 7 - 10t}\\{z = 15 + 5t}\end{array}} \right.\)
c) \(d:\left\{ {\begin{array}{*{20}{l}}{x = 23 + 2t}\\{y = 57 + t}\\{z = 19 - 5t}\end{array}} \right.\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 24 + {t^\prime }}\\{y = 6 + {t^\prime }}\\{z = {t^\prime }}\end{array}} \right.\)
Quảng cáo
Trả lời:
a) Đường thẳng d và \({{\rm{d}}^\prime }\) có vectơ chỉ phương lần lượt là \(\vec a = (3;5;4),\overrightarrow {{a^\prime }} = (2;5; - 4)\)
Ta có \(\cos \left( {d,{d^\prime }} \right) = \frac{{|3 \cdot 2 + 5.5 + 4 \cdot ( - 4)|}}{{\sqrt {{3^2} + {5^2} + {4^2}} \cdot \sqrt {{2^2} + {5^2} + {{( - 4)}^2}} }} = \frac{{15}}{{15\sqrt {10} }} = \frac{1}{{\sqrt {10} }}\). Suy rab) Đường thẳng d và \({{\rm{d}}^\prime }\) có vectơ chỉ phương lần lượt là \(\vec a = (3;6;6),\overrightarrow {{a^\prime }} = ( - 10; - 10;5)\)
Ta có \(\cos \left( {d,{d^\prime }} \right) = \frac{{|3 \cdot ( - 10) + 6 \cdot ( - 10) + 6 \cdot 5|}}{{\sqrt {{3^2} + {6^2} + {6^2}} \cdot \sqrt {{{( - 10)}^2} + {{( - 10)}^2} + {5^2}} }} = \frac{{60}}{{135}} = \frac{4}{9}\). Suy rac) Đường thẳng d và \({{\rm{d}}^\prime }\) có vectơ chỉ phương lần lượt là \(\vec a = (2;1; - 5),\overrightarrow {{a^\prime }} = (1;1;1)\)
Ta có \(\cos \left( {d,{d^\prime }} \right) = \frac{{|2 \cdot 1 + 1 \cdot 1 + ( - 5) \cdot 1|}}{{\sqrt {{2^2} + {1^2} + {{( - 5)}^2}} \cdot \sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{2}{{3\sqrt {10} }}\). Suy raHot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trong không gian Oxyz, ta có \(C(2;3;0),\overrightarrow {SC} = (2;3; - 2)\); \(\overline {BD} = ( - 2;3;0)\).
a) Hai đường thằng SC và BD có vectơ chi phương lần lượt là \(\vec u = (2;3; - 2),\vec v = ( - 2;3;0)\).
Ta có \(\cos (SC,BD) = \frac{{|\vec u \cdot \vec v|}}{{|\vec u| \cdot |\vec v|}} = \frac{{|2 \cdot ( - 2) + 3 \cdot 3 + ( - 2) \cdot 0|}}{{\sqrt {{2^2} + {3^2} + {{( - 2)}^2}} \cdot \sqrt {{{( - 2)}^2} + {3^2} + {0^2}} }} = \frac{5}{{\sqrt {221} }}\).
Suy ra .
b) Ta có phương trình mặt phẳng \((SBD)\) theo đoạn chắn là \(\frac{x}{2} + \frac{y}{3} + \frac{z}{2} = 1\) hay \(3x + 2y + 3z - 6 = 0\).
Mặt phẳng \((SBD)\) có vectơ pháp tuyến \(\vec n = (3;2;3)\), mặt đáy \((ABCD)\) có vectơ pháp tuyến \(\vec k = (0;0;1)\). Gọi \(\alpha \) là góc giũua mặt phẳng \((SBD)\) và mặt đáy.
Ta có \(\cos \alpha = \frac{{|\vec n \cdot \vec k|}}{{|\vec n| \cdot |\vec k|}} = \frac{{|3 \cdot 0 + 2 \cdot 0 + 3 \cdot 1|}}{{\sqrt {{3^2} + {2^2} + {3^2}} \cdot \sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{3}{{\sqrt {22} }}\). Suy ra .
c) Gọi \(\beta \) là góc giũa đường thẳng SC và mặt phẳng \((SBD)\).
Ta có \(\sin \beta = \frac{{|\vec u \cdot \vec n|}}{{|\vec u| \cdot |\vec n|}} = \frac{{|2 \cdot 3 + 3 \cdot 2 + ( - 2) \cdot 3|}}{{\sqrt {{2^2} + {3^2} + {{( - 2)}^2}} \cdot \sqrt {{3^2} + {2^2} + {3^2}} }} = \frac{6}{{\sqrt {374} }}\). Suy ra .
Lời giải
Đường thẳng \(\Delta :\frac{x}{2} = \frac{y}{{ - 1}} = \frac{z}{2}\) có vectơ chỉ phương là \(\vec u = (2; - 1;2)\).
Các trục tọa độ Ox , Oy và Oz có vectơ chỉ phương lần lượt là \(\vec i = (1;0;0)\), \(\vec j = (0;1;0)\) và \(\vec k = (0;0;1)\).
Ta có:
\(\begin{array}{l}\cos (\Delta ,{\rm{Ox}}) = \frac{{|2 \cdot 1 + ( - 1) \cdot 0 + 2 \cdot 0|}}{{\sqrt {{2^2} + {{( - 1)}^2} + {2^2}} \cdot \sqrt {{1^2} + {0^2} + {0^2}} }} = \frac{2}{3}\\\cos (\Delta ,{\rm{Oy}}) = \frac{{|2 \cdot 0 + ( - 1) \cdot 1 + 2 \cdot 0|}}{{\sqrt {{2^2} + {{( - 1)}^2} + {2^2}} \cdot \sqrt {{0^2} + {1^2} + {0^2}} }} = \frac{1}{3}\\\cos (\Delta ,{\rm{Oz}}) = \frac{{|2 \cdot 0 + ( - 1) \cdot 0 + 2 \cdot 1|}}{{\sqrt {{2^2} + {{( - 1)}^2} + {2^2}} \cdot \sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{2}{3}\end{array}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.