Trong không gian với hệ tọa độ Oxyz cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 1 - t}\\{y = 2 + 2t}\\{z = 3 + t}\end{array}} \right.\) và mặt phẳng (P):\(x - y + 3 = 0\). Tính số đo góc giữa đường thẳng d và mặt phẳng (P).
Trong không gian với hệ tọa độ Oxyz cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 1 - t}\\{y = 2 + 2t}\\{z = 3 + t}\end{array}} \right.\) và mặt phẳng (P):\(x - y + 3 = 0\). Tính số đo góc giữa đường thẳng d và mặt phẳng (P).
Quảng cáo
Trả lời:
Chọn A
Đường thẳng \(d\)có véc tơ chỉ phương là \(\overrightarrow u = \left( { - 1;2;1} \right)\)
Mặt phẳng \(\left( P \right)\) có véc tơ pháp tuyến là \(\overrightarrow n = \left( {1; - 1;0} \right)\)
Gọi \(\alpha \)là góc giữa Đường thẳng \(d\)và Mặt phẳng \(\left( P \right)\). Khi đó ta có
\(\sin \alpha = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow n } \right|}} = \frac{{\left| { - 1.1 + 2.\left( { - 1} \right) + 1.0} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {2^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {0^2}} }} = \frac{3}{{2\sqrt 3 }} = \frac{{\sqrt 3 }}{2}\)
Do đóHot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi \[I\] hình chiếu của \[M\] lên \[\left( {ABCD} \right)\], suy ra \[I\] là trung điểm của \[AO\].
Khi đó \[CI = \frac{3}{4}AC = \frac{{3a\sqrt 2 }}{4}\].
Xét \[\Delta CNI\]có: \[CN = \frac{a}{2}\], \[\widehat {NCI} = {45^o}\].
Áp dụng định lý cosin ta có:
\[NI = \sqrt {C{N^2} + C{I^2} - 2CN.CI.\cos {{45}^o}} = \sqrt {\frac{{{a^2}}}{4} + \frac{{9{a^2}}}{8} - 2.\frac{a}{2}.\frac{{3a\sqrt 2 }}{4}.\frac{{\sqrt 2 }}{2}} = \frac{{a\sqrt {10} }}{4}\].
Xét \[\Delta MIN\] vuông tại \[I\]nên \[MI = \sqrt {M{N^2} - N{I^2}} = \sqrt {\frac{{3{a^2}}}{2} - \frac{{5{a^2}}}{8}} = \frac{{a\sqrt {14} }}{4}\].
Mà \[MI//SO,\,MI = \frac{1}{2}SO \Rightarrow SO = \frac{{a\sqrt {14} }}{2}\].
Chọn hệ trục tọa độ \[Oxyz\]như hình vẽ:
Ta có: \[O\left( {0\,;\,0;\,0} \right)\], \[B\left( {0\,;\,\frac{{\sqrt 2 }}{2};\,0} \right)\], \[D\left( {0\,;\, - \frac{{\sqrt 2 }}{2};\,0} \right)\], \[C\left( {\frac{{\sqrt 2 }}{2}\,;0\,;\,0} \right)\], \[N\left( {\frac{{\sqrt 2 }}{4}\,;\,\frac{{\sqrt 2 }}{4};\,0} \right)\],
\[A\left( { - \frac{{\sqrt 2 }}{2}\,;0\,;\,0} \right)\], \[S\left( {0\,;0\,;\,\frac{{\sqrt {14} }}{4}} \right)\], \[M\left( { - \frac{{\sqrt 2 }}{4}\,;0\,;\,\frac{{\sqrt {14} }}{4}} \right)\].
Khi đó \[\overrightarrow {MN} = \left( {\frac{{\sqrt 2 }}{2}\,;\,\frac{{\sqrt 2 }}{4}\,;\, - \frac{{\sqrt {14} }}{4}\,} \right)\,\,\], \[\overrightarrow {SB} = \left( {0\,;\,\frac{{\sqrt 2 }}{2};\, - \frac{{\sqrt {14} }}{2}\,} \right)\], \[\overrightarrow {SD} = \left( {0\,;\, - \frac{{\sqrt 2 }}{2};\, - \frac{{\sqrt {14} }}{2}\,} \right)\].
Vectơ pháp tuyến mặt phẳng \[\left( {SBD} \right)\]: \[\overrightarrow n = \overrightarrow {SB} \wedge \overrightarrow {SD} = \left( { - \sqrt 7 \,;\,0\,;\,0} \right)\].
Suy ra \[{\rm{sin}}\left( {MN\,,\,\left( {SBD} \right)} \right) = \frac{{\left| {\overrightarrow {MN} .\overrightarrow n } \right|}}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| { - \sqrt 7 .\frac{{\sqrt 2 }}{2}} \right|}}{{\sqrt 7 .\frac{{\sqrt 6 }}{2}}} = \frac{{\sqrt 3 }}{3}\].
Lời giải
Chọn A
Gọi \(\overrightarrow {{n_\alpha }} \), \(\,\overrightarrow {{n_\beta }} \) lần lượt là vectơ pháp tuyến của mặt phẳng \((\alpha )\) và \((\beta )\).
Ta có \(\overrightarrow {{n_\alpha }} (2;\,\, - \,\,1;\,\,2);\,\,\overrightarrow {{n_\beta }} (1;\,\,2;\,\, - \,2)\).
Áp dụng công thức:
\(cos((\alpha ),\,(\beta ))\,\, = \,\,\left| {cos(\overrightarrow {{n_\alpha }} ,\,\,\overrightarrow {{n_\beta }} )} \right|\,\, = \,\,\frac{{\left| {\overrightarrow {{n_\alpha }} .\,\,\overrightarrow {{n_\beta }} } \right|}}{{\left| {\overrightarrow {{n_\alpha }} } \right|.\,\,\left| {\overrightarrow {{n_\beta }} } \right|}} = \,\,\frac{{\left| {2.1 - 1.2 - 2.2} \right|}}{{\sqrt {{2^2} + \,\,{{( - 1)}^2}\,\, + \,\,{2^2}} .\sqrt {({1^2}\,\, + \,\,{2^2}\,\, + \,\,{{( - 2)}^2}} }}\,\, = \,\,\frac{4}{9}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.