Câu hỏi:

10/08/2025 365 Lưu

Cho mặt phẳng \((P):\,\,3x\,\, + \,\,4y\,\, + \,\,5z\,\, + \,\,2\,\, = \,\,0\) và đường thẳng d là giao tuyến của hai mặt phẳng \((\alpha ):\,\,x\,\, - \,\,2y\,\, + \,\,1\,\, = \,\,0;\,\,(\beta ):\,\,x\,\, - \,\,2z\,\, - \,\,3\,\, = \,\,0\). Gọi \(\varphi \) là góc giữa đường thẳng d và mặt phẳng (P). Khi đó:

A. 600

B. 450

C. 300

D. 900

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Đường thẳng d có phương trình: \(\left\{ \begin{array}{l}x\,\, = \,\,2t\\y\,\, = \,\,\frac{1}{2}\,\, + \,\,t\\z\,\, = \,\, - \frac{3}{2}\,\, + \,\,t\end{array} \right.,\,\,t\,\, \in \,\,R\). Suy ra VTCP của d là \(\overrightarrow {{u_d}} (2;\,\,1;\,\,1)\)

Ta có \[\sin \left( {d,(P)} \right) = \,\,\left| {cos\left( {\overrightarrow {{u_d}} ,\,\,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow {{u_d}} .\overrightarrow n } \right|}}{{\left| {\overrightarrow {{u_d}} } \right|.\left| {\overrightarrow n } \right|}}\,\, = \,\,\frac{{\left| {2.3\,\, + \,\,1.4\,\, + \,\,1.5} \right|}}{{\sqrt {{2^2}\,\, + \,\,{1^2}\,\, + \,\,{1^2}} .\sqrt {{3^2}\,\, + \,\,{4^2}\,\, + \,\,{5^2}} }}\,\, = \,\,\frac{{\sqrt 3 }}{2}\].

  (d,(P))  =  60°

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Mặt phẳng \[(P)\], \[(Q)\] có vectơ pháp tuyến lần lượt là \[{\vec n_p} = \left( {m + 2;2m; - m} \right)\], \[{\vec n_Q} = \left( {m;m - 3;2} \right)\]

\[(P) \bot (Q) \Leftrightarrow {\vec n_p}.{\vec n_Q} = 0 \Leftrightarrow \left( {m + 2} \right)m + 2m\left( {m - 3} \right) - 2m = 0 \Leftrightarrow 3{m^2} - 6m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 6\end{array} \right.\]

Lời giải

Chọn D

Cho hình lăng trụ đứng ABC.A'B'C' có AB = AC = a góc BAC = 120 độ, AA'= a. Gọi M, N lần lượt là trung điểm của B'C' và CC' (ảnh 1)

Gọi \[H\] là trung điểm \[BC\], \[BC = a\sqrt 3 \], \[AH = \frac{a}{2}\].

Chọn hệ trục tọa độ \[H\left( {0;0;0} \right)\], \[A\left( {\frac{a}{2};0;0} \right)\], \[B\left( {0;\frac{{a\sqrt 3 }}{2};0} \right)\], \[C\left( {0; - \frac{{a\sqrt 3 }}{2};0} \right)\],

\[M\left( {0;0;a} \right)\], \[N\left( {0; - \frac{{a\sqrt 3 }}{2};\frac{a}{2}} \right)\]. Gọi \[\varphi \] là góc giữa mặt phẳng\(\left( {AMN} \right)\) và mặt phẳng \(\left( {ABC} \right)\).

\(\left( {AMN} \right)\) có một vtpt \[\vec n = \left[ {\overrightarrow {AM} ,\overrightarrow {AN} } \right]\]\[ = \left( {\frac{{\sqrt 3 }}{2};\frac{{ - 1}}{4};\frac{{\sqrt 3 }}{4}} \right)\]

\(\left( {ABC} \right)\) có một vtpt \[\overrightarrow {HM} \]\[ = \left( {0;0;1} \right)\], từ đó \[\cos \varphi  = \frac{{\left| {\vec n.\overrightarrow {HM} } \right|}}{{\left| {\vec n} \right|HM}}\]\[ = \frac{{\frac{{\sqrt 3 }}{4}}}{{1.1}}\]\[ = \frac{{\sqrt 3 }}{4}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\cos \alpha  = \frac{{\left| {\overrightarrow {AB} .\overrightarrow {CD} } \right|}}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {CD} } \right|}}.\)  

B.\(\cos \alpha \,\, = \,\,\frac{{\overrightarrow {AB} .\overrightarrow {CD} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {CD} } \right|}}.\)

C. \[\cos \alpha \,\, = \,\,\frac{{\left| {\overrightarrow {AB} .\overrightarrow {CD} } \right|}}{{\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right]} \right|}}.\]                          
D.\(\cos \alpha \,\, = \,\,\frac{{\left| {\left[ {\overrightarrow {AB} .\overrightarrow {CD} } \right]} \right|}}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {CD} } \right|}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP