Câu hỏi:

10/08/2025 32 Lưu

Cho mặt phẳng \((\alpha ):\,\,2x\,\, - \,\,y\,\, + \,\,2z\,\, - \,\,1\,\, = \,\,0;\,\,(\beta ):\,\,x\,\, + \,\,2y\,\, - \,\,2z\,\, - \,\,3\,\, = \,\,0\). Cosin góc giữa mặt phẳng \((\alpha )\)và mặt phẳng\(\,(\beta )\) bằng:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Gọi \(\overrightarrow {{n_\alpha }} \), \(\,\overrightarrow {{n_\beta }} \) lần lượt là vectơ pháp tuyến của mặt phẳng \((\alpha )\) và \((\beta )\).

Ta có \(\overrightarrow {{n_\alpha }} (2;\,\, - \,\,1;\,\,2);\,\,\overrightarrow {{n_\beta }} (1;\,\,2;\,\, - \,2)\).

Áp dụng công thức:

\(cos((\alpha ),\,(\beta ))\,\, = \,\,\left| {cos(\overrightarrow {{n_\alpha }} ,\,\,\overrightarrow {{n_\beta }} )} \right|\,\, = \,\,\frac{{\left| {\overrightarrow {{n_\alpha }} .\,\,\overrightarrow {{n_\beta }} } \right|}}{{\left| {\overrightarrow {{n_\alpha }} } \right|.\,\,\left| {\overrightarrow {{n_\beta }} } \right|}} = \,\,\frac{{\left| {2.1 - 1.2 - 2.2} \right|}}{{\sqrt {{2^2} + \,\,{{( - 1)}^2}\,\, + \,\,{2^2}} .\sqrt {({1^2}\,\, + \,\,{2^2}\,\, + \,\,{{( - 2)}^2}} }}\,\, = \,\,\frac{4}{9}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Mặt phẳng \[(P)\], \[(Q)\] có vectơ pháp tuyến lần lượt là \[{\vec n_p} = \left( {m + 2;2m; - m} \right)\], \[{\vec n_Q} = \left( {m;m - 3;2} \right)\]

\[(P) \bot (Q) \Leftrightarrow {\vec n_p}.{\vec n_Q} = 0 \Leftrightarrow \left( {m + 2} \right)m + 2m\left( {m - 3} \right) - 2m = 0 \Leftrightarrow 3{m^2} - 6m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 6\end{array} \right.\]

Câu 2

Lời giải

Chọn A

Áp dụng công thức ở lý thuyết.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP