Cho hình hộp đứng \(ABCD.A'B'C'D'\) có đáy là hình thoi, tam giác \[ABD\] đều. Gọi \(M,{\rm{ }}N\) lần lượt là trung điểm của \(BC\) và \(C'D'\), biết rằng \(MN \bot B'D\). Gọi \(\alpha \) là góc tạo bởi đường thẳng \(MN\) và mặt đáy \(\left( {ABCD} \right)\), khi đó \(\cos \alpha \) bằng:
Cho hình hộp đứng \(ABCD.A'B'C'D'\) có đáy là hình thoi, tam giác \[ABD\] đều. Gọi \(M,{\rm{ }}N\) lần lượt là trung điểm của \(BC\) và \(C'D'\), biết rằng \(MN \bot B'D\). Gọi \(\alpha \) là góc tạo bởi đường thẳng \(MN\) và mặt đáy \(\left( {ABCD} \right)\), khi đó \(\cos \alpha \) bằng:
Quảng cáo
Trả lời:

Chọn A

* Chọn \(AB = 2 \Rightarrow BD = 2;AC = 2\sqrt 3 \), đặt
\(AA' = h\), chọn hệ trục tọa độ \(Oxyz\) như hình vẽ ta có: \(D\left( {1;0;0} \right)\), \(B\left( { - 1;0;0} \right)\), \(C\left( {0;\sqrt 3 ;0} \right)\), \(D'\left( {1;0;h} \right)\), \(C'\left( {0;\sqrt 3 ;h} \right)\), \(B'\left( { - 1;0;h} \right)\).
\( \Rightarrow M\left( { - \frac{1}{2};\frac{{\sqrt 3 }}{2};0} \right),N\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};h} \right)\), \(\overrightarrow {MN} = \left( {1;0;h} \right)\), \(\overrightarrow {B'D} = \left( {2;0; - h} \right)\).
* Do \(MN \bot B'D \Rightarrow \overrightarrow {MN} .\overrightarrow {B'D} = 0 \Leftrightarrow 2 - {h^2} = 0 \Rightarrow h = \sqrt 2 \)\( \Rightarrow \overrightarrow {MN} = \left( {1;0;\sqrt 2 } \right)\). Ta có:
\(MN{\rm{//}}\overrightarrow u = \overrightarrow {MN} = \left( {1;0;\sqrt 2 } \right)\), \(\left( {ABCD} \right) \bot \overrightarrow n = \overrightarrow j = \left( {0;0;1} \right)\).
* Do \(\alpha \) là góc tạo bởi đường thẳng \(MN\) và mặt đáy \(\left( {ABCD} \right)\) nên ta có:
\(\sin \alpha = \left| {\cos \left( {\overrightarrow u ;\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\sqrt 2 }}{{\sqrt 3 }} \Rightarrow \cos \alpha = \sqrt {1 - {{\sin }^2}\alpha } = \frac{1}{{\sqrt 3 }}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Mặt phẳng \[(P)\], \[(Q)\] có vectơ pháp tuyến lần lượt là \[{\vec n_p} = \left( {m + 2;2m; - m} \right)\], \[{\vec n_Q} = \left( {m;m - 3;2} \right)\]
\[(P) \bot (Q) \Leftrightarrow {\vec n_p}.{\vec n_Q} = 0 \Leftrightarrow \left( {m + 2} \right)m + 2m\left( {m - 3} \right) - 2m = 0 \Leftrightarrow 3{m^2} - 6m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 6\end{array} \right.\]
Lời giải
Chọn A
Áp dụng công thức ở lý thuyết.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.