Câu hỏi:

11/08/2025 11 Lưu

Để đi từ Thọ Xuân (Thanh Hóa) vào Nha Trang (Khánh Hòa) có thể đi bằng một trong các phương tiện: Máy bay hoặc Ôtô. Biết rằng mỗi ngày từ Thọ Xuân vào Nha Trang có:

Để đi từ Thọ Xuân (Thanh Hóa) vào Nha Trang (Khánh Hòa) có thể đi bằng một trong các phương tiện: Máy bay hoặc Ôtô. Biết rằng mỗi ngày từ Thọ Xuân vào Nha Trang có: Trong một ngày, số cách lự (ảnh 1)

Trong một ngày, số cách lựa chọn phương tiện để đi từ Thọ Xuân vào Nha Trang là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số cách lựa chọn phương tiện để đi từ Thọ Xuân vào Nha Trang bằng

Máy bay là 3 cách chọn.

Ôtô là 10 cách chọn.

Vậy số cách chọn là \(3 + 10 = 13\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hai hình bình hành \(ABCD\) và \(ABEF\) không cùng nằm trong một mặt phẳng. Trên cạnh \(AC\) lấy điểm \(M\) và trên cạnh \(BF\) lấy điểm \(N\) sao cho \(\frac{{AM}}{{AC}} = \frac{{BN}}{{B (ảnh 1)

Ta có \(MN\,{\rm{//}}\,DE\) nên bốn điểm \(M,N,D,E\) đồng phẳng.

Trong mặt phẳng \(\left( {MNED} \right)\), gọi \(I = DM \cap NE \Rightarrow I \in AB,AB = \left( {ABCD} \right) \cap \left( {ABEF} \right)\).

Khi đó: \(\frac{{IM}}{{DM}} = \frac{{IN}}{{NE}}\).

Theo giả thiết, ta có: \(\frac{{AM}}{{AC}} = k\,\,(1) \Rightarrow \frac{{AC - MC}}{{AC}} = k \Rightarrow 1 - \frac{{MC}}{{AC}} = k \Rightarrow \frac{{MC}}{{AC}} = 1 - k\,\,(2).\)

Từ (1) và (2) suy ra \(\frac{{AM}}{{MC}} = \frac{k}{{1 - k}}\); tương tự ta chứng minh được \(\frac{{BN}}{{FN}} = \frac{k}{{1 - k}}\).

Vì \(AB\,{\rm{//}}\,CD\) nên \(\frac{{IM}}{{DM}} = \frac{{IA}}{{DC}} = \frac{{AM}}{{MC}} = \frac{k}{{1 - k}}\);

Vì \(AB\,{\rm{//}}\,EF\) nên \(\frac{{IN}}{{NE}} = \frac{{BI}}{{EF}} = \frac{{BN}}{{NF}} = \frac{k}{{1 - k}}\).

Mặt khác \(\frac{{AI}}{{DC}} + \frac{{BI}}{{EF}} = \frac{{AI}}{{FE}} + \frac{{BI}}{{EF}} = 1 \Rightarrow 2 \cdot \frac{k}{{1 - k}} = 1\)\( \Rightarrow 2k = 1 - k \Rightarrow k = \frac{1}{3}{\rm{. }}\)

Vậy với \(k = \frac{1}{3}\) thì \(MN\,{\rm{//}}\,DE\).

Lời giải

 Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với \(AB{\rm{ // }}CD\). Trên cạnh \(SB\) lấy điểm \(M\). Gọi \(I\) là giao điểm của \(AC\) và \(BD\); \(P\) là giao điểm của \(DM\) và (ảnh 1)

Ta có \(P = MD \cap SI\). Khi đó, \(\left\{ \begin{array}{l}P \in MD,MD \subset \left( {ADM} \right)\\P \in SI,SI \subset \left( {SAC} \right)\end{array} \right. \Rightarrow P \in \left( {ADM} \right) \cap \left( {SAC} \right).\)

Ngoài ra \(A \in \left( {ADM} \right) \cap \left( {SAC} \right)\), do đó \(\left( {ADM} \right) \cap \left( {SAC} \right) = AP.\)Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP