Câu hỏi:

12/08/2025 7 Lưu

Trong không gian \[Oxyz\], cho mặt phẳng \[(P)\]có phương trình \[x - 2y + 2z - 5 = 0\]. Xét mặt phẳng \[(Q):x + (2m - 1)z + 7 = 0\], với \[m\]là tham số thực. Có bao nhiêu giá trị của \[m\] để \[(P)\] tạo với \[(Q)\] góc \[\frac{\pi }{4}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: 2

Mặt phẳng \[(P)\], \[(Q)\] có vectơ pháp tuyến lần lượt là\[\overrightarrow {{n_p}}  = \left( {1; - 2;2} \right)\], \[\overrightarrow {{n_Q}}  = \left( {1;0;2m - 1} \right)\]

Vì \[(P)\] tạo với \[(Q)\] góc \[\frac{\pi }{4}\] nên

\[\begin{array}{l}{\rm{cos}}\frac{\pi }{4} = \left| {{\rm{cos}}\left( {\overrightarrow {{n_p}} ;\overrightarrow {{n_Q}} } \right)} \right| \Leftrightarrow \frac{1}{{\sqrt 2 }} = \frac{{\left| {1 + 2(2m - 1)} \right|}}{{3.\sqrt {1 + {{(2m - 1)}^2}} }}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow 2{\left( {4m - 1} \right)^2} = 9\left( {4{m^2} - 4m + 2} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow 4{m^2} - 20m + 16 = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 4\end{array} \right..\end{array}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \[45\]

\[\left( P \right)\]qua O và nhận \[\overrightarrow {OH}  = \left( {2;1;2} \right)\]làm VTPT

\[\left( Q \right):x - y - 11 = 0\] có VTPT \[\overrightarrow n  = \left( {1;1;0} \right)\]

Ta có cosP,Q^=OH.nOH.n=12P,Q^=450

Lời giải

(Trả lời ngắn) Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác cân đỉnh A. Biết BC = a√3 và ABC = 30 độ, cạnh bên AA' = 0 (ảnh 1)

Gọi \(O\) là trung điểm \(BC\).

Ta có: BO=AB.cos30oAB=BOcos30o=a32.32=a=AC và AO=AB.sin30o=a2

Theo đề bài:

2CM=3CC'CM=32CC'CC'+C'M=32CC'C'M=12CC'C'M=a2

(Trả lời ngắn) Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác cân đỉnh A. Biết BC = a√3 và ABC = 30 độ, cạnh bên AA' = 0 (ảnh 2)

Coi \(a = 1\).

Gắn hệ trục tọa độ \(Oxyz\)như hình vẽ với \(O\left( {0;\,0;\,0} \right)\), \(A\left( {0;\,\frac{1}{2};\,0} \right)\), \(B\left( {\frac{{\sqrt 3 }}{2};\,0;\,0} \right)\), \(C\left( { - \frac{{\sqrt 3 }}{2};\,0;\,0} \right)\), \(B'\left( {\frac{{\sqrt 3 }}{2};\,0;\,1} \right)\), \(M\left( { - \frac{{\sqrt 3 }}{2};\,0;\,\frac{3}{2}} \right)\).

Khi đó \(\left( {ABC} \right) \equiv \left( {Oxy} \right):z = 0 \Rightarrow \left( {ABC} \right)\) có một véc-tơ pháp tuyến là \(\overrightarrow k  = \left( {0;\,0;\,1} \right)\).

Ta có: \(\overrightarrow {AB'}  = \left( {\frac{{\sqrt 3 }}{2};\, - \frac{1}{2};\,1} \right)\), \(\overrightarrow {AM}  = \left( { - \frac{{\sqrt 3 }}{2};\, - \frac{1}{2};\,\frac{3}{2}} \right)\)\( \Rightarrow \overrightarrow {{n_{\left( {AB'M} \right)}}}  = 4\left[ {\overrightarrow {AB'} ,\overrightarrow {AM} } \right] = \left( {1;\,5\sqrt 3 ;\,2\sqrt 3 } \right)\).

Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {AB'M} \right)\).

Vậy \[{\rm{cos}}\alpha  = \frac{{\left| {\overrightarrow k .\overrightarrow {{n_{\left( {AB'M} \right)}}} } \right|}}{{\left| {\overrightarrow k } \right|.\left| {\overrightarrow {{n_{\left( {AB'M} \right)}}} } \right|}} = \frac{{\left| {2\sqrt 3 } \right|}}{{1.2\sqrt {22} }} = \sqrt {\frac{3}{{22}}}  \Rightarrow {\rm{sin}}\alpha  = \sqrt {1 - {\rm{co}}{{\rm{s}}^2}\alpha }  = \sqrt {\frac{{19}}{{22}}}  = \frac{{\sqrt {418} }}{{22}}\].