Câu hỏi:

19/08/2025 22 Lưu

Cho khối tứ diện \(ABCD\) có \(BC = 3\), \(CD = 4\), \(\widehat {ABC} = \widehat {ADC} = \widehat {BCD} = {90^0}\). Góc giữa đường thẳng \(AD\) và \(BC\) bằng 600. Tính côsin góc giữa hai phẳng \(\left( {ABC} \right)\) và \(\left( {ACD} \right)\) (làm tròn kết quả đến hàng phần mười) .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
(Trả lời ngắn) Cho khối tứ diện ABCD có BC = 3, CD = 4, góc ABC = ADC = BCD = 90 độ. Góc giữa đường thẳng AD và BD bằng 60 độ (ảnh 1)

Dựng \[AO \bot \left( {BCD} \right)\] khi đó \[O\] là đỉnh thứ tư của hình chữ nhật \[BCDO\].

Góc giữa đường thẳng \(AD\) và \(BC\) là góc giữa đường thẳng \(AD\) và \(OD\) và bằng ADO^=600
Xét tam giác ADO vuông tại O: tan600=OAODOA=33.

Gắn hệ tọa độ \[Oxyz\] vào hình chóp như hình vẽ.

Ta có:

\[O\left( {0;0;0} \right)\]; \[B\left( {4;0;0} \right)\]; \[D\left( {0;3;0} \right)\]; \[C\left( {4;3;0} \right)\]; \[A\left( {0;0;3\sqrt 3 } \right)\].

\[\overrightarrow {AB}  = \left( {4;0; - 3\sqrt 3 } \right)\]; \[\overrightarrow {BC}  = \left( {0;3;0} \right)\]; \[\overrightarrow {AD}  = \left( {0;3; - 3\sqrt 3 } \right)\]; \[\overrightarrow {CD}  = \left( { - 4;0;0} \right)\].

Mặt phẳng \[\left( {ABC} \right)\] nhận véctơ \[\overrightarrow {{n_1}}  = \left[ {\overrightarrow {AB} ,\overrightarrow {BC} } \right] = \left( {9\sqrt 3 ;0;12} \right)\] làm véctơ pháp tuyến.

Mặt phẳng \[\left( {ADC} \right)\] nhận véctơ \[\overrightarrow {{n_2}}  = \left[ {\overrightarrow {AD} ,\overrightarrow {CD} } \right] = \left( {0;12\sqrt 3 ;12} \right)\] làm véctơ pháp tuyến.

Nên \[\cos \left( {\left( {ABC} \right);\left( {ADC} \right)} \right) = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{4}{{\sqrt {43} .2}} = \frac{{2\sqrt {43} }}{{43}} \cdot \]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(Trả lời ngắn) Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = a, AC = a√3. Hình chiếu vuông góc của A' lên mặt phẳng ABC (ảnh 1)

Ta chọn hệ trục tọa độ \(Oxyz\) với \(O \equiv A\) như hình vẽ, chọn \(a = 1\) đơn vị, khi đó ta có tọa độ điểm \(B\left( {1;0;0} \right)\), \(C\left( {0;\sqrt 3 ;0} \right)\) suy ra trung điểm của \(BC\) là \(H\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};0} \right)\), vì \(H\) là hình chiếu của \(A'\) nên suy ra tọa độ của \(A'\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};\sqrt 5 } \right)\). Ta tìm tọa độ \(B'\), gọi tọa độ \(B'\left( {x;y;z} \right)\) khi đó ta có \(\overrightarrow {A'B'}  = \overrightarrow {OB} \) nên tọa độ \(B'\left( {\frac{3}{2};\frac{{\sqrt 3 }}{2};\sqrt 5 } \right)\). Ta cũng có \(\overrightarrow {B'C}  = \left( { - \frac{3}{2};\frac{{\sqrt 3 }}{2}; - \sqrt 5 } \right)\) và \(\overrightarrow {A'B}  = \left( {\frac{1}{2}; - \frac{{\sqrt 3 }}{2}; - \sqrt 5 } \right)\). Từ đó ta có \(\cos \varphi  = \frac{{\left| {\overrightarrow {A'B} .\overrightarrow {B'C} } \right|}}{{\left| {\overrightarrow {A'B} } \right|.\left| {\overrightarrow {B'C} } \right|}}\) \( = \frac{7}{{2.\sqrt 6 .\sqrt 8 }} = \frac{{7\sqrt 3 }}{{24}}\).

Lời giải

(Trả lời ngắn) Cho hình hộp chữ nhật ABCD.A'B'C'D', có AB = a, AD = a√2 góc giữa A'C và mặt phẳng ABCD bằng 30 độ (ảnh 1)

Do \(ABCD.A'B'C'D'\) là hình hộp chữ nhật nên \(A'C'\) là hình chiếu vuông góc của \(A'C\) trên (ABCD)(A'C,(ABCD))=(A'C,A'C')=CA'C'^=300.

Ta có \(AC = \sqrt {A{B^2} + A{D^2}}  = a\sqrt 3 ;\tan \widehat {CA'C'} = \frac{{CC'}}{{A'C'}} \Rightarrow CC' = a.\)

Kết hợp với giả thiết ta được \(ABB'A'\) là hình vuông và có \(H\) là tâm.

Gọi \(E,F\) lần lượt là hình chiếu vuông góc của \(K\) trên \(A'D'\& A'A.\)

Ta có \(\frac{1}{{A{K^2}}} = \frac{1}{{A'{A^2}}} + \frac{1}{{A{D^2}}} \Rightarrow AK = \frac{{a\sqrt 6 }}{3};\)\(A'K = \sqrt {A'{A^2} - A{K^2}}  = \frac{a}{{\sqrt 3 }};\)

\(\frac{1}{{K{F^2}}} = \frac{1}{{K{A^2}}} + \frac{1}{{A'{K^2}}} \Rightarrow KF = \frac{{a\sqrt 2 }}{3};KE = \sqrt {A'{K^2} - K{F^2}}  \Rightarrow KE = \frac{a}{3}.\)

Ta chọn hệ trục tọa độ \(Oxyz\) thỏa mãn \(O \equiv A'\) còn \(D',{\rm{ }}B',{\rm{ }}A\) theo thứ tự thuộc các tia \(Ox,{\rm{ }}Oy,{\rm{ }}Oz.\) Khi đó ta có tọa độ các điểm lần lượt là:

\(A(0;0;a),B'(0;a;0),H(0;\frac{a}{2};\frac{a}{2}),K(\frac{{a\sqrt 2 }}{3};0;\frac{a}{3}),E(\frac{{a\sqrt 2 }}{3};0;0),F(0;0;\frac{{a\sqrt 2 }}{3}).\)

Mặt phẳng \(\left( {ABB'A'} \right)\) là mặt phẳng \((yOz)\) nên có VTPT là \({\overrightarrow n _1} = (1;0;0);\)

Ta có \(\left[ {\overrightarrow {AK} ,\overrightarrow {AH} } \right] = \frac{{{a^2}}}{6}{\overrightarrow n _2},{\rm{ }}{\overrightarrow n _2}(2;\sqrt 2 ;\sqrt 2 ).\)

Mặt phẳng \((AKH)\)có VTPT là \({\overrightarrow n _2} = (2;\sqrt 2 ;\sqrt 2 );\)

Gọi \(\alpha \) là góc giữa hai mặt phẳng\(\left( {AHK} \right)\) và \(\left( {ABB'A'} \right)\).

Ta có cosα=cos(n1,n2)=12α=450.