Viết phương trình chính tắc của đường thẳng \(d\) đi qua điểm \({M_0}(1;2;3)\) và nhận \(\vec a = (4;5; - 7)\) làm vectơ chỉ phương.
Viết phương trình chính tắc của đường thẳng \(d\) đi qua điểm \({M_0}(1;2;3)\) và nhận \(\vec a = (4;5; - 7)\) làm vectơ chỉ phương.
Quảng cáo
Trả lời:
Đường thẳng \(d\) có phương trình chính tắc là: \(\frac{{x - 1}}{4} = \frac{{y - 2}}{5} = \frac{{z - 3}}{{ - 7}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Từ phương trình tham số, ta có \(\vec a = (6;2;4)\) là một vectơ chỉ phương của \(d\). Chọn \(\vec b = \frac{1}{2}\vec a = (3;1;2)\), ta có \(\vec b\) cũng là một vectơ chỉ phương của \(d\).
b) Thay \(t = 0\) vào phương trình tham số của \(d\), ta được: \(\left\{ {\begin{array}{*{20}{l}}{x = - 2 + 6.0}\\{y = 11 + 2.0}\\{z = 4.0}\end{array}{\rm{ hay }}\left\{ {\begin{array}{*{20}{l}}{x = - 2}\\{y = 11}\\{z = 0.}\end{array}} \right.} \right.\)
Vậy \(A( - 2;11;0)\).
Tương tự, với \(t = 2\) thì \(B(10;15;8)\), với \(t = - 3\) thì \(C( - 20;5; - 12)\).
Lời giải
Ta có phương trình tham số của \(d\) là: \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 4t}\\{y = 2 + 5t}\\{z = 3 - 7t}\end{array}} \right.\)
Thay \(x = 1\) vào phương trình \(x = 1 + 4t\), ta được \(1 = 1 + 4t\), suy ra \(t = 0\).
Thay \(y = 1\) và \(t = 0\) vào phương trình \(y = 2 + 5t\), ta thấy phương trình không thoả mãn. Suy ra đường thẳng \(d\) không đi qua điểm \(A\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.