Cho đường thẳng \(d\) có phương trình tham số \(\left\{ {\begin{array}{*{20}{l}}{x = - 1 + 8t}\\{y = - 4t}\\{z = 3 + 12t}\end{array}} \right.\)
a) Tìm hai vectơ chỉ phương của \(d\).
b) Tìm ba điểm trên \(d\).
Cho đường thẳng \(d\) có phương trình tham số \(\left\{ {\begin{array}{*{20}{l}}{x = - 1 + 8t}\\{y = - 4t}\\{z = 3 + 12t}\end{array}} \right.\)
a) Tìm hai vectơ chỉ phương của \(d\).
b) Tìm ba điểm trên \(d\).
Quảng cáo
Trả lời:

a) Đường thẳng d nhận \(\vec a = (8; - 4;12)\) làm một vectơ chỉ phương.
Có \(\vec b = \frac{1}{4}\vec a = (2; - 1;3)\) cũng là một vectơ chỉ phương của đường thẳng d .
b) Cho \(t = 0\), ta có \({\rm{A}}( - 1;0;3)\).
Cho t \( = 1\), ta có \({\rm{B}}(7; - 4;15)\).
Cho t \( = 2\), ta có \({\rm{C}}(15; - 8;27)\).
Vậy 3 điểm \({\rm{A}},{\rm{B}},{\rm{C}}\) là ba điểm thuộc d .
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có \(\overrightarrow {AB} = (6;3;2)\) là một vectơ chỉ phương của đường thẳng AB .
\(\overrightarrow {A{A^\prime }} = (3;7;8)\) là một vectơ chỉ phương của đường thẳng \({\rm{B}}{{\rm{B}}^\prime }\) vì \({\rm{A}}{{\rm{A}}^\prime }//{\rm{B}}{{\rm{B}}^\prime }\).
\(\overrightarrow {AC} = (3;0; - 1)\) là một vectơ chỉ phương của đường thẳng \({{\rm{A}}^\prime }{{\rm{C}}^\prime }\) vi \({\rm{AC}}//{{\rm{A}}^\prime }{{\rm{C}}^\prime }\).
Lời giải
a) Với \({\rm{t}} = 0\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z = - 1}\end{array}} \right.\). Suy ra \({\rm{A}}(1;3; - 1) \in \Delta \). Với \({\rm{t}} = 1\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z = - 1}\end{array}} \right.\). Suy ra \({\rm{B}}(0;5;2) \in \Delta \).
b) Thay tọa độ điểm \({\rm{C}}(6; - 7; - 16)\) vào phương trình đường thẳng \(\Delta \) ta được:
Thay tọa độ điểm \({\rm{D}}( - 3;11; - 11)\) vào phương trình đường thẳng \(\Delta \) ta được:
Vậy trong hai điểm C và D , chỉ có điểm C thuộc đường thẳng \(\Delta \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.