Câu hỏi:

19/08/2025 35 Lưu

Cho hình hộp \(ABCD.{A^\prime }{B^\prime }{C^\prime }{D^\prime }\) (Hinh 5.17), đường thẳng \(d\) đi qua hai điểm \(A\) và \(C\). Tìm bốn vectơ có điểm đẩu và điểm cuối trong các đỉnh của hình hộp đă cho và là vectơ chỉ phương của \(d\).

Cho hình hộp ABCD.A'B'C'D' (Hinh 5.17), đường thẳng d đi qua hai điểm A và C. Tìm bốn vectơ có điểm đẩu và điểm cuối trong các đỉnh của hình hộp  (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {CA} \) có giá trùng với \(d\), hai vectơ \(\overrightarrow {{A^\prime }{C^\prime }} \) và \(\overrightarrow {{C^\prime }{A^\prime }} \) có giá song song với \(d\) (\(AC//{A^\prime }{C^\prime }\) ). Vậy ta có bốn vectơ chỉ phương của đường thẳng \(d\) là \(\overrightarrow {AC} ,\overrightarrow {CA} ,\overrightarrow {{A^\prime }{C^\prime }} ,\overrightarrow {{C^\prime }{A^\prime }} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình hộp ABCD.A'B'C'D'. Hãy chỉ ra các vectơ chỉ phương của đường thẳng BC' mà điểm đầu và điểm cuối của vectơ đó đều là các đỉnh của hình hộp (ảnh 1)

Đường thẳng \(B{C^\prime }\) nhận các vectơ \(\overline {B{C^\prime }} ,\overrightarrow {{C^\prime }B} ,\overrightarrow {A{D^\prime },} \overline {{D^\prime }A} \) là các vectơ chỉ phương.

Lời giải

a) Với \({\rm{t}} = 0\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{A}}(1;3; - 1) \in \Delta \). Với \({\rm{t}} = 1\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{B}}(0;5;2) \in \Delta \).

b) Thay tọa độ điểm \({\rm{C}}(6; - 7; - 16)\) vào phương trình đường thẳng \(\Delta \) ta được:

6=1t7=3+2t16=1+3tt=5t=5t=5t=5. Do dó, CΔ

Thay tọa độ điểm \({\rm{D}}( - 3;11; - 11)\) vào phương trình đường thẳng \(\Delta \) ta được:

3=1t11=3+2t11=1+3tt=4t=4t=103 (vô lí). Do dó, DΔ

Vậy trong hai điểm C và D , chỉ có điểm C thuộc đường thẳng \(\Delta \).