Câu hỏi:

14/08/2025 36 Lưu

Trong không gian Oxyz, cho đường thẳng \(d\) đi qua điểm \(M(2; - 2;1)\) và có vectơ chỉ phương là \(\vec a = (1; - 1;2)\).

a) Viết phương trình tham số của đường thẳng \(d\).

b) Trong hai điểm \(A(3; - 3;3)\) và \(B(1; - 1;1)\), điếm nào thuộc \(d\) ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Phương trình tham số của \(d\) là \(\left\{ {\begin{array}{*{20}{l}}{x = 2 + t}\\{y =  - 2 - t(t \in \mathbb{R}){\rm{. }}}\\{z = 1 + 2t}\end{array}} \right.\)

b) Điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) thuộc đường thẳng \(d\) khi và chỉ khi có giá trị \(t\) thoả mãn hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{{x_0} = 2 + t}\\{{y_0} =  - 2 - t}\\{{z_0} = 1 + 2t.}\end{array}} \right.\)

Ta có:

- Với \(A(3; - 3;3)\), ta xét 3=2+t3=2t. Hệ phương trình này có nghiệm duy nhất t=13=1+2t nên \(A\) thuộc \(d\) ứng với \(t = 1\).

- Với \(B(1; - 1;1)\), ta xét \(\left\{ {\begin{array}{*{20}{l}}{1 = 2 + t}\\{ - 1 =  - 2 - t}\\{1 = 1 + 2t}\end{array}} \right.\). Hệ phương trình này vô nghiệm nên \(B\) không thuộc \(d\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình hộp ABCD.A'B'C'D'. Hãy chỉ ra các vectơ chỉ phương của đường thẳng BC' mà điểm đầu và điểm cuối của vectơ đó đều là các đỉnh của hình hộp (ảnh 1)

Đường thẳng \(B{C^\prime }\) nhận các vectơ \(\overline {B{C^\prime }} ,\overrightarrow {{C^\prime }B} ,\overrightarrow {A{D^\prime },} \overline {{D^\prime }A} \) là các vectơ chỉ phương.

Lời giải

a) Với \({\rm{t}} = 0\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{A}}(1;3; - 1) \in \Delta \). Với \({\rm{t}} = 1\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{B}}(0;5;2) \in \Delta \).

b) Thay tọa độ điểm \({\rm{C}}(6; - 7; - 16)\) vào phương trình đường thẳng \(\Delta \) ta được:

6=1t7=3+2t16=1+3tt=5t=5t=5t=5. Do dó, CΔ

Thay tọa độ điểm \({\rm{D}}( - 3;11; - 11)\) vào phương trình đường thẳng \(\Delta \) ta được:

3=1t11=3+2t11=1+3tt=4t=4t=103 (vô lí). Do dó, DΔ

Vậy trong hai điểm C và D , chỉ có điểm C thuộc đường thẳng \(\Delta \).