Câu hỏi:

14/08/2025 24 Lưu

Trong không gian Oxyz, cho đường thẳng \(d\) đi qua điểm \(M(2; - 2;1)\) và có vectơ chỉ phương là \(\vec a = (1; - 1;2)\).

a) Viết phương trình tham số của đường thẳng \(d\).

b) Trong hai điểm \(A(3; - 3;3)\) và \(B(1; - 1;1)\), điếm nào thuộc \(d\) ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Phương trình tham số của \(d\) là \(\left\{ {\begin{array}{*{20}{l}}{x = 2 + t}\\{y =  - 2 - t(t \in \mathbb{R}){\rm{. }}}\\{z = 1 + 2t}\end{array}} \right.\)

b) Điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) thuộc đường thẳng \(d\) khi và chỉ khi có giá trị \(t\) thoả mãn hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{{x_0} = 2 + t}\\{{y_0} =  - 2 - t}\\{{z_0} = 1 + 2t.}\end{array}} \right.\)

Ta có:

- Với \(A(3; - 3;3)\), ta xét 3=2+t3=2t. Hệ phương trình này có nghiệm duy nhất t=13=1+2t nên \(A\) thuộc \(d\) ứng với \(t = 1\).

- Với \(B(1; - 1;1)\), ta xét \(\left\{ {\begin{array}{*{20}{l}}{1 = 2 + t}\\{ - 1 =  - 2 - t}\\{1 = 1 + 2t}\end{array}} \right.\). Hệ phương trình này vô nghiệm nên \(B\) không thuộc \(d\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong không gian Oxyz, cho hình lăng trụ tam giác ABC.A'B'C' với A(1; 2; 1), B(7; 5; 3), C(4; 2; 0), A'(4; 9; 9) (ảnh 1)

Ta có \(\overrightarrow {AB}  = (6;3;2)\) là một vectơ chỉ phương của đường thẳng AB .

\(\overrightarrow {A{A^\prime }}  = (3;7;8)\) là một vectơ chỉ phương của đường thẳng \({\rm{B}}{{\rm{B}}^\prime }\) vì \({\rm{A}}{{\rm{A}}^\prime }//{\rm{B}}{{\rm{B}}^\prime }\).

\(\overrightarrow {AC}  = (3;0; - 1)\) là một vectơ chỉ phương của đường thẳng \({{\rm{A}}^\prime }{{\rm{C}}^\prime }\) vi \({\rm{AC}}//{{\rm{A}}^\prime }{{\rm{C}}^\prime }\).

Lời giải

a) Với \({\rm{t}} = 0\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{A}}(1;3; - 1) \in \Delta \). Với \({\rm{t}} = 1\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{B}}(0;5;2) \in \Delta \).

b) Thay tọa độ điểm \({\rm{C}}(6; - 7; - 16)\) vào phương trình đường thẳng \(\Delta \) ta được:

6=1t7=3+2t16=1+3tt=5t=5t=5t=5. Do dó, CΔ

Thay tọa độ điểm \({\rm{D}}( - 3;11; - 11)\) vào phương trình đường thẳng \(\Delta \) ta được:

3=1t11=3+2t11=1+3tt=4t=4t=103 (vô lí). Do dó, DΔ

Vậy trong hai điểm C và D , chỉ có điểm C thuộc đường thẳng \(\Delta \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP