Câu hỏi:

19/08/2025 36 Lưu

Trong không gian Oxyz, cho đường thẳng \(d\) có phương trình chính tắc \(\frac{{x - 3}}{2} = \frac{{y + 2}}{3} = \frac{z}{6}\).

a) Tìm toạ độ một vectơ chỉ phương của \(d\).

b) Trong hai điểm \(A(1; - 5; - 6)\) và \(B(3; - 2;1)\), điểm nào thuộc \(d\) ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Một vectơ chỉ phương của \(d\) là \(\vec a = (2;3;6)\).

b) Một điểm thuộc \(d\) khi toạ độ của điểm đó thoả mãn phương trình chính tắc của \(d\) :

\(\frac{{x - 3}}{2} = \frac{{y + 2}}{3} = \frac{z}{6}\left( {^*} \right)\)

Thay toạ độ của các điểm A, B vào phương trình chính tắc (*). Ta có:

- Điểm \(A(1; - 5; - 6)\) thoả mãn (*) vì \(\frac{{1 - 3}}{2} = \frac{{ - 5 + 2}}{3} = \frac{{ - 6}}{6}\) nên \(A\) thuộc \(d\);

- Điểm \(B(3; - 2;1)\) không thoả mãn vì \(\frac{{3 - 3}}{2} = \frac{{ - 2 + 2}}{3} \ne \frac{1}{6}\) nên \(B\) không thuộc \(d\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình hộp ABCD.A'B'C'D'. Hãy chỉ ra các vectơ chỉ phương của đường thẳng BC' mà điểm đầu và điểm cuối của vectơ đó đều là các đỉnh của hình hộp (ảnh 1)

Đường thẳng \(B{C^\prime }\) nhận các vectơ \(\overline {B{C^\prime }} ,\overrightarrow {{C^\prime }B} ,\overrightarrow {A{D^\prime },} \overline {{D^\prime }A} \) là các vectơ chỉ phương.

Lời giải

a) Với \({\rm{t}} = 0\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{A}}(1;3; - 1) \in \Delta \). Với \({\rm{t}} = 1\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{B}}(0;5;2) \in \Delta \).

b) Thay tọa độ điểm \({\rm{C}}(6; - 7; - 16)\) vào phương trình đường thẳng \(\Delta \) ta được:

6=1t7=3+2t16=1+3tt=5t=5t=5t=5. Do dó, CΔ

Thay tọa độ điểm \({\rm{D}}( - 3;11; - 11)\) vào phương trình đường thẳng \(\Delta \) ta được:

3=1t11=3+2t11=1+3tt=4t=4t=103 (vô lí). Do dó, DΔ

Vậy trong hai điểm C và D , chỉ có điểm C thuộc đường thẳng \(\Delta \).