Trong không gian Oxyz, cho đường thẳng \(d\) có phương trình chính tắc \(\frac{{x - 3}}{2} = \frac{{y + 2}}{3} = \frac{z}{6}\).
a) Tìm toạ độ một vectơ chỉ phương của \(d\).
b) Trong hai điểm \(A(1; - 5; - 6)\) và \(B(3; - 2;1)\), điểm nào thuộc \(d\) ?
Trong không gian Oxyz, cho đường thẳng \(d\) có phương trình chính tắc \(\frac{{x - 3}}{2} = \frac{{y + 2}}{3} = \frac{z}{6}\).
a) Tìm toạ độ một vectơ chỉ phương của \(d\).
b) Trong hai điểm \(A(1; - 5; - 6)\) và \(B(3; - 2;1)\), điểm nào thuộc \(d\) ?
Quảng cáo
Trả lời:
a) Một vectơ chỉ phương của \(d\) là \(\vec a = (2;3;6)\).
b) Một điểm thuộc \(d\) khi toạ độ của điểm đó thoả mãn phương trình chính tắc của \(d\) :
\(\frac{{x - 3}}{2} = \frac{{y + 2}}{3} = \frac{z}{6}\left( {^*} \right)\)
Thay toạ độ của các điểm A, B vào phương trình chính tắc (*). Ta có:
- Điểm \(A(1; - 5; - 6)\) thoả mãn (*) vì \(\frac{{1 - 3}}{2} = \frac{{ - 5 + 2}}{3} = \frac{{ - 6}}{6}\) nên \(A\) thuộc \(d\);
- Điểm \(B(3; - 2;1)\) không thoả mãn vì \(\frac{{3 - 3}}{2} = \frac{{ - 2 + 2}}{3} \ne \frac{1}{6}\) nên \(B\) không thuộc \(d\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Đường thẳng \(B{C^\prime }\) nhận các vectơ \(\overline {B{C^\prime }} ,\overrightarrow {{C^\prime }B} ,\overrightarrow {A{D^\prime },} \overline {{D^\prime }A} \) là các vectơ chỉ phương.
Lời giải

a) Ta có \(\overrightarrow {AB} = ( - 2;4;0)\) là một vectơ chỉ phương của đường thẳng AB; \(\overrightarrow {AC} = ( - 2;0;7)\) là một vectơ chỉ phương của đường thẳng AC.
b) Vì \(\vec v = ( - 1;2;0) = \frac{1}{2}\overrightarrow {AB} \) nên \(\vec v\) là một vectơ chỉ phương của đường thẳng ABLời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.