Một phần mềm mô phỏng vận động viên đang tập bắn súng trong không gian Oxyz. Cho biết trục \(d\) của nòng súng và cọc đỡ bia \({d^\prime }\) có phương trình lần lượt là:
\(d:\left\{ {\begin{array}{*{20}{l}}{x = t}\\{y = 20}\\{z = 9}\end{array}} \right.\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 20}\\{z = 1 + 3{t^\prime }.}\end{array}} \right.\)
Xét vị trí tương đối giữa \(d\) và \({d^\prime }\), chúng có vuông góc với nhau không?
Một phần mềm mô phỏng vận động viên đang tập bắn súng trong không gian Oxyz. Cho biết trục \(d\) của nòng súng và cọc đỡ bia \({d^\prime }\) có phương trình lần lượt là:
\(d:\left\{ {\begin{array}{*{20}{l}}{x = t}\\{y = 20}\\{z = 9}\end{array}} \right.\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 20}\\{z = 1 + 3{t^\prime }.}\end{array}} \right.\)

Xét vị trí tương đối giữa \(d\) và \({d^\prime }\), chúng có vuông góc với nhau không?
Quảng cáo
Trả lời:
Đường thắng d và d' lần lượt có vectơ chỉ phương là \(\vec a = (1;0;0),\overrightarrow {{a^\prime }} = (0;0;3)\)
Ta có \(\vec a \cdot \overrightarrow {{a^\prime }} = 1.0 + 0.0 + 0.3 = 0\). Do đó d và d' vuông góc với nhau.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phương trình chính tắc của đường cáp là: \(\frac{{x - 10}}{2} = \frac{{y - 3}}{{ - 2}} = \frac{z}{1}\).
b) Do tốc độ chuyển động của cabin là \(4,5\;{\rm{m}}/{\rm{s}}\) nên độ dài AM bằng \(4,5t(\;{\rm{m}})\). Vì vậy \(|\overrightarrow {AM} | = 4,5t(t \ge 0)\).
Do hai vectơ \(\overrightarrow {AM} \) và \(\vec u\) là cùng phương và cùng hướng nên \(\overrightarrow {AM} = k\vec u\) với \(k\) là số thực dương nào đó. Suy ra: \(|\overrightarrow {AM} | = k|\vec u| = k \cdot \sqrt {{2^2} + {{( - 2)}^2} + 1} = 3k\). Do đó \(3k = 4,5t\). Suy ra \(k = \frac{{3t}}{2}\). Vì thế, ta có: \(\overrightarrow {AM} = \frac{{3t}}{2}\vec u = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\).
Gọi toạ độ của điểm \(M\) là \(\left( {{x_M};{y_M};{z_M}} \right)\).
Do \(\overrightarrow {AM} = \left( {{x_M} - {x_A};{y_M} - {y_A};{z_M} - {z_A}} \right) = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + {x_A}}\\{{y_M} = - 3t + {y_A}}\\{{z_M} = \frac{{3t}}{2} + {z_A}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + 10}\\{{y_M} = - 3t + 3}\\{{z_M} = \frac{{3t}}{2}.}\end{array}} \right.} \right.\)
Vậy điểm \(M\) có toạ độ là \(\left( {3t + 10; - 3t + 3;\frac{{3t}}{2}} \right)\).
c) Do \({x_B} = 550\) nên \(3t + 10 = 550\), tức là \(t = 180\) (s). Do đó, ta có điểm \(B(550; - 537;270)\).
Vậy \(AB = \sqrt {{{(550 - 10)}^2} + {{( - 537 - 3)}^2} + {{(270 - 0)}^2}} = \sqrt {656100} = 810(\;{\rm{m}})\).
d) Đường thẳng AB có vectơ chỉ phương \(\vec u = (2; - 2;1)\) và mặt phẳng (Oxy) có vectơ pháp tuyếnLời giải
a) Do điểm \(C(0;0;5)\) nên \(AC = \sqrt {{{(3 - 0)}^2} + {{( - 4 - 0)}^2} + {{(2 - 5)}^2}} = \sqrt {34} (\;{\rm{m}})\);
\(BC = \sqrt {{{( - 5 - 0)}^2} + {{( - 2 - 0)}^2} + {{(1 - 5)}^2}} = \sqrt {45} = 3\sqrt 5 (\;{\rm{m}}){\rm{. }}\)
b) Ta có: \(\overrightarrow {OA} = (3; - 4;2),\overrightarrow {OB} = ( - 5; - 2;1)\) nên \([\overrightarrow {OA} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{l}}{ - 4}&2\\{ - 2}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&3\\1&{ - 5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&{ - 4}\\{ - 5}&{ - 2}\end{array}} \right|} \right) = (0; - 13; - 26){\rm{. }}\)
Vì thế, vectơ \(\vec n = (0;1;2)\) là một vectơ pháp tuyến của mặt phẳng \((OAB)\).
Mặt khác, do \(\overrightarrow {CA} = (3; - 4; - 3),\overrightarrow {BC} = (5;2;4)\) nên ta có:
- \(\sin (CA,(OAB)) = |\cos (\overrightarrow {CA} ,\vec n)| = \frac{{|\overrightarrow {CA} \cdot \vec n|}}{{|\overrightarrow {CA} | \cdot |\vec n|}} = \frac{{|3 \cdot 0 + ( - 4) \cdot 1 + ( - 3) \cdot 2|}}{{\sqrt {34} \cdot \sqrt 5 }} = \frac{{10}}{{\sqrt {170} }}\),
suy ra . Vậy góc tạo bởi dây neo CA và mặt phẳng sườn núi là khoảng .
suy ra . Vậy góc tạo bởi dây neo BC và mặt phẳng sườn núi là khoảng .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





