Câu hỏi:

19/08/2025 289 Lưu

Một phần mềm mô phỏng vận động viên đang tập bắn súng trong không gian Oxyz. Cho biết trục \(d\) của nòng súng và cọc đỡ bia \({d^\prime }\) có phương trình lần lượt là:

\(d:\left\{ {\begin{array}{*{20}{l}}{x = t}\\{y = 20}\\{z = 9}\end{array}} \right.\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 20}\\{z = 1 + 3{t^\prime }.}\end{array}} \right.\)

Một phần mềm mô phỏng vận động viên đang tập bắn súng trong không gian Oxyz. Cho biết trục d của nòng súng và cọc đỡ bia d có phương trình lần lượt  (ảnh 1)

Xét vị trí tương đối giữa \(d\) và \({d^\prime }\), chúng có vuông góc với nhau không?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường thắng d và d' lần lượt có vectơ chỉ phương là \(\vec a = (1;0;0),\overrightarrow {{a^\prime }}  = (0;0;3)\)

Ta có \(\vec a \cdot \overrightarrow {{a^\prime }}  = 1.0 + 0.0 + 0.3 = 0\). Do đó d và d' vuông góc với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình chính tắc của đường cáp là: \(\frac{{x - 10}}{2} = \frac{{y - 3}}{{ - 2}} = \frac{z}{1}\).

b) Do tốc độ chuyển động của cabin là \(4,5\;{\rm{m}}/{\rm{s}}\) nên độ dài AM bằng \(4,5t(\;{\rm{m}})\). Vì vậy \(|\overrightarrow {AM} | = 4,5t(t \ge 0)\).

Do hai vectơ \(\overrightarrow {AM} \) và \(\vec u\) là cùng phương và cùng hướng nên \(\overrightarrow {AM}  = k\vec u\) với \(k\) là số thực dương nào đó. Suy ra: \(|\overrightarrow {AM} | = k|\vec u| = k \cdot \sqrt {{2^2} + {{( - 2)}^2} + 1}  = 3k\). Do đó \(3k = 4,5t\). Suy ra \(k = \frac{{3t}}{2}\). Vì thế, ta có: \(\overrightarrow {AM}  = \frac{{3t}}{2}\vec u = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\).

Gọi toạ độ của điểm \(M\) là \(\left( {{x_M};{y_M};{z_M}} \right)\).

Do \(\overrightarrow {AM}  = \left( {{x_M} - {x_A};{y_M} - {y_A};{z_M} - {z_A}} \right) = \left( {3t; - 3t;\frac{{3t}}{2}} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + {x_A}}\\{{y_M} =  - 3t + {y_A}}\\{{z_M} = \frac{{3t}}{2} + {z_A}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_M} = 3t + 10}\\{{y_M} =  - 3t + 3}\\{{z_M} = \frac{{3t}}{2}.}\end{array}} \right.} \right.\)

Vậy điểm \(M\) có toạ độ là \(\left( {3t + 10; - 3t + 3;\frac{{3t}}{2}} \right)\).

c) Do \({x_B} = 550\) nên \(3t + 10 = 550\), tức là \(t = 180\) (s). Do đó, ta có điểm \(B(550; - 537;270)\).

Vậy \(AB = \sqrt {{{(550 - 10)}^2} + {{( - 537 - 3)}^2} + {{(270 - 0)}^2}}  = \sqrt {656100}  = 810(\;{\rm{m}})\).

d) Đường thẳng AB có vectơ chỉ phương \(\vec u = (2; - 2;1)\) và mặt phẳng (Oxy) có vectơ pháp tuyến k=(0;0;1)
Do đó, ta có: sin(Δ,(Oxy))=|cos(u,k)|=|uk||u||k|=131=13.  Vậy (Δ,(Oxy))19°

Lời giải

a) Do điểm \(C(0;0;5)\) nên \(AC = \sqrt {{{(3 - 0)}^2} + {{( - 4 - 0)}^2} + {{(2 - 5)}^2}}  = \sqrt {34} (\;{\rm{m}})\);

\(BC = \sqrt {{{( - 5 - 0)}^2} + {{( - 2 - 0)}^2} + {{(1 - 5)}^2}}  = \sqrt {45}  = 3\sqrt 5 (\;{\rm{m}}){\rm{. }}\)

b) Ta có: \(\overrightarrow {OA}  = (3; - 4;2),\overrightarrow {OB}  = ( - 5; - 2;1)\) nên \([\overrightarrow {OA} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{l}}{ - 4}&2\\{ - 2}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&3\\1&{ - 5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&{ - 4}\\{ - 5}&{ - 2}\end{array}} \right|} \right) = (0; - 13; - 26){\rm{. }}\)

Vì thế, vectơ \(\vec n = (0;1;2)\) là một vectơ pháp tuyến của mặt phẳng \((OAB)\).

Mặt khác, do \(\overrightarrow {CA}  = (3; - 4; - 3),\overrightarrow {BC}  = (5;2;4)\) nên ta có:

- \(\sin (CA,(OAB)) = |\cos (\overrightarrow {CA} ,\vec n)| = \frac{{|\overrightarrow {CA}  \cdot \vec n|}}{{|\overrightarrow {CA} | \cdot |\vec n|}} = \frac{{|3 \cdot 0 + ( - 4) \cdot 1 + ( - 3) \cdot 2|}}{{\sqrt {34}  \cdot \sqrt 5 }} = \frac{{10}}{{\sqrt {170} }}\),

suy ra (CA,(OAB))50° . Vậy góc tạo bởi dây neo CA và mặt phẳng sườn núi là khoảng 50° .

 - sin(BC,(OAB))=|cos(BC,n)|=|BCn||BC||n|=|50+21+42|355=23

suy ra (BC,(OAB))42° . Vậy góc tạo bởi dây neo BC và mặt phẳng sườn núi là khoảng 42° .