Câu hỏi:

15/08/2025 17 Lưu

Trong không gian với hệ tọa độ Oxyz (đơn vị trên mỗi trục toạ độ là kilômét), một máy bay đang ở vị trí \(A(3,5; - 2;0,4)\) và sẽ hạ cánh ở vị trí \(B(3,5;5,5;0)\) trên đường băng EG (Hình 37 ).

Trong không gian với hệ tọa độ Oxyz (đơn vị trên mỗi trục toạ độ là kilômét), một máy bay đang ở vị trí A(3; 5; -2; 0; 4) (ảnh 1)

a) Viết phương trình đường thẳng AB.

b) Hãy cho biết góc trượt (góc giữa đường bay AB và mặt phẳng nằm ngang (Oxy))  có nằm trong phạm vi cho phép từ 2,5° đến 3,5° hay không.

c) Có một lớp mây được mô phỏng bởi một mặt phẳng \((\alpha )\) đi qua ba điểm \(M(5;0;0)\), \(N(0; - 5;0),P(0;0;0,5)\). Tìm tọa độ của điểm \(C\) là vị trí mà máy bay xuyên qua đám mây để hạ cánh.

d) Tìm toạ độ của điểm \(D\) trên đoạn thẳng AB là vị trí mà máy bay ở độ cao 120 m .

e) Theo quy định an toàn bay, người phi công phải nhìn thấy điểm đầu \(E(3,5;6,5;0)\) của đường băng ở độ cao tối thiểu là 120 m . Hỏi sau khi ra khỏi đám mây, người phi công có đạt được quy định an toàn đó hay không? Biết rằng tầm nhìn của người phi công sau khi ra khỏi đám mây là 900 m (Nguồn: R.Larson and B.Edwards, Calculus 10e, Cengage, 2014).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đường thẳng AB đi qua điếm \({\rm{A}}(3,5; - 2;0,4)\) và nhận \(\overrightarrow {AB}  = (0;7,5; - 0,4)\) làm vectơ chỉ phương.

Phương trình tham số của đường thắng AB là: \(\left\{ {\begin{array}{*{20}{l}}{x = 3,5}\\{y =  - 2 + 7,5t{\rm{ (t là tham số)}}{\rm{. }}}\\{z = 0,4 - 0,4t}\end{array}} \right.\)

Lưu ý: Ta có thế chọn điếm đi qua là \(B\) đế viết phương trình tham số hoặc có thế viết phương trinh chính tắc của đường thằng AB

b) Mặt phẳng nằm ngang (\({\rm{O}}x{\rm{y}})\) có vectơ pháp tuyến là \(\vec k = (0;0;1)\).

Ta có \(\sin (AB,(Oxy)) = \frac{{|0 - 0 + 7,5 \cdot 0 + ( - 0,4) \cdot 1|}}{{\sqrt {{0^2} + {{(7,5)}^2} + {{( - 0,4)}^2}}  \cdot \sqrt {{0^2} + {0^2} + {1^2}} }} \approx 0,053\).

Suy ra (AB,(Oxy))3°2,5°;3,5° . Vậy góc trượt nằm trong phạm vi cho phép.

c) Ta có \(\overrightarrow {MN}  = ( - 5; - 5;0),\overrightarrow {MP}  = ( - 5;0;0,5)\).

Xét vectơ \(\quad \vec n = [\overrightarrow {MN} ,\overrightarrow {MP} ] = \left( {\left| {\begin{array}{*{20}{c}}{ - 5}&0\\0&{0,5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 5}\\{0,5}&{ - 5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 5}&{ - 5}\\{ - 5}&0\end{array}} \right|} \right)\), hay \(\vec n = ( - 2,5;2,5; - 25)\)

Khi đó \(\vec n\) là một vectơ pháp tuyến của mặt phẳng (MNP) hay chính là mặt phắng (a).

Phương trình mặt phắng (a) là: \( - 2,5(x - 5) + 2,5(y - 0) - 25(z - 0) = 0 \Leftrightarrow x - y + 10z - 5 = 0.\)

Vi C là vị trí mà máy bay xuyên qua đám mây đế hạ cánh nên C là giao điếm của đường thẳng AB và mặt phắng \((a)\).

Vi \(C \in AB\) nên gọi tọa độ điếm C là \({\rm{C}}(3,5; - 2 + 7,5{\rm{t}};0,4 - 0,4{\rm{t}})\).

Lại có \(C \in ({\rm{a}})\) nên ta có \(3,5 - ( - 2 + 7,5{\rm{t}}) + 10(0,4 - 0,4{\rm{t}}) - 5 = 0\), suy ra \({\rm{t}} = \frac{9}{{23}}\).

Vậy \( \subset \left( {3,5;\frac{{43}}{{46}};\frac{{28}}{{115}}} \right)\).

d) Vi \(D \in AB\) nên gọi tọa độ điếm \(D\) là \(D(3,5; - 2 + 7,5t;0,4 - 0,4t)\).

D là vị trí mà máy bay ở độ cao 120 m , tức là khoảng cách từ D đến mặt phẳng (Oxy) bẳng 120 m và bằng \(0,12\;{\rm{km}}\).

Ta có \({\rm{d}}({\rm{D}},({\rm{Oxy}})) = \frac{{\left| {0,4 - 0,4{t^\prime }} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} }} = \left| {0,4 - 0,4{t^\prime }} \right|\).

Khi đó, \(\left| {0,4 - 0,4{{\rm{t}}^\prime }} \right| = 0,12 \Rightarrow \left[ {\begin{array}{*{20}{l}}{0,4 - 0,4{t^\prime } = 0,12}\\{0,4 - 0,4{t^\prime } =  - 0,12}\end{array} \Rightarrow \left[ {\begin{array}{*{20}{l}}{{t^\prime } = 0,7}\\{{t^\prime } = 1,3}\end{array}} \right.} \right.\).

Với t' \( = 0,7\), ta có \(D(3,5;3,25;0,12)\).

Với t' \( = 1,3\), ta có \(D(3,5;7,75; - 0,12)\).

Vi D là vị trí độ cao của máy bay nên ta chọn D(3,5 ; 3,25 ; 0,12).

e) Ta có \(DE = \sqrt {{{(3,5 - 3,5)}^2} + {{(4,5 - 3,25)}^2} + {{(0 - 0,12)}^2}}  \approx 1,256(\;{\rm{km}})\)

Vì tầm nhìn xa của phi công sau khi ra khỏi đám mây là \(900\;{\rm{m}} = 0,9\;{\rm{km}} < 1,256\;{\rm{km}}\) nên người phi công đó không đạt được quy định an toàn bay.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường thẳng d có vectơ chỉ phương là \(\vec a = (0;1;1)\)

Mặt phẳng \(({\rm{P}})\) có vectơ pháp tuyến là \(\vec n = (0;0;1)\)

\(\sin (d,(P)) = \frac{{|0.0 + 1.0 + 1 \cdot 1|}}{{\sqrt {{1^2} + {1^2}}  \cdot \sqrt {{1^2}} }} = \frac{1}{{\sqrt 2 }}\). Suy ra (d,(P))=45°