Trong không gian \[Oxyz\], đường thẳng \[d:\frac{{x + 3}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 5}}{2}\] có một vectơ chỉ phương là
Quảng cáo
Trả lời:
Chọn B
Đường thẳng \[\left( P \right)\] có một vectơ chỉ phương là \[\overrightarrow {{u_4}} = \left( {1;\, - 1;\,2} \right) = - 1\left( { - 1;\,1;\, - 2} \right) \Rightarrow \overrightarrow {{u_4}} = \left( { - 1;\,1;\, - 2} \right)\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Thay tọa độ các điểm vào phương trình đường thẳng ta thấy điểm \(P\left( { - 1\,;\,2\,;\,1} \right)\) thỏa \(\frac{{ - 1 + 1}}{{ - 1}} = \frac{{2 - 2}}{3} = \frac{{1 - 1}}{3} = 0\). Vậy điểm \(P\left( { - 1\,;\,2\,;\,1} \right)\) thuộc đường thẳng yêu cầu.
Lời giải
Chọn D
Ta có một vectơ chỉ phương của \[d\] là \(\overrightarrow {{u_1}} = \left( { - 1;2;3} \right)\).
\(\overrightarrow {{u_2}} = - 3\overrightarrow {{u_1}} \), \(\overrightarrow {{u_3}} = - \overrightarrow {{u_1}} \) \( \Rightarrow \) các vectơ \(\overrightarrow {{u_2}} ,\overrightarrow {{u_3}} \) cũng là vectơ chỉ phương của \[d\].
Không tồn tại số \(k\) để \(\overrightarrow {{u_4}} = k\overrightarrow {.{u_1}} \) nên \(\overrightarrow {{u_4}} = \left( { - 2;4;3} \right)\) không phải là vectơ chỉ phương của \[d\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.