Cho hai đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x\,\, = \,\,2\,\, + \,\,t\\y\,\, = \,\, - 1\,\, + \,\,t\\z\,\, = \,\,3\end{array} \right.\) và \({d_2}:\,\,\left\{ \begin{array}{l}x\,\, = \,\,1\,\, - \,\,t\\y\,\, = \,\,2\\z\,\, = \,\, - 2\,\, + \,\,t\end{array} \right.\). Góc giữa hai đường thẳng d1 và d2 là:
Cho hai đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x\,\, = \,\,2\,\, + \,\,t\\y\,\, = \,\, - 1\,\, + \,\,t\\z\,\, = \,\,3\end{array} \right.\) và \({d_2}:\,\,\left\{ \begin{array}{l}x\,\, = \,\,1\,\, - \,\,t\\y\,\, = \,\,2\\z\,\, = \,\, - 2\,\, + \,\,t\end{array} \right.\). Góc giữa hai đường thẳng d1 và d2 là:
Quảng cáo
Trả lời:
Chọn D
Gọi \(\overrightarrow {{u_1}} ;\,\,\overrightarrow {{u_2}} \) lần lượt là vectơ chỉ phương của đường thẳng d1; d2.
\(\overrightarrow {{u_1}} \, = \,(1;\,\,1;\,\,0);\,\,\overrightarrow {{u_2}} \,\, = \,\,( - \,1;\,\,0;\,\,1)\)
Áp dụng công thức ta có \(cos\left( {{d_1},{d_2}} \right)\,\, = \,\,\left| {\cos \left( {\overrightarrow {{u_1}} ,\,\,\overrightarrow {{u_2}} } \right)} \right|\,\, = \,\,\frac{{\left| {\overrightarrow {{u_1}} .\,\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\,\left| {\,\overrightarrow {{u_2}} } \right|}}\,\, = \,\,\frac{{\left| { - \,1} \right|}}{{\sqrt {1\,\, + \,\,1} .\sqrt {1\,\, + \,\,1} }}\,\, = \,\,\frac{1}{2}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Ta có một vectơ chỉ phương của \[d\] là \(\overrightarrow {{u_1}} = \left( { - 1;2;3} \right)\).
\(\overrightarrow {{u_2}} = - 3\overrightarrow {{u_1}} \), \(\overrightarrow {{u_3}} = - \overrightarrow {{u_1}} \) \( \Rightarrow \) các vectơ \(\overrightarrow {{u_2}} ,\overrightarrow {{u_3}} \) cũng là vectơ chỉ phương của \[d\].
Không tồn tại số \(k\) để \(\overrightarrow {{u_4}} = k\overrightarrow {.{u_1}} \) nên \(\overrightarrow {{u_4}} = \left( { - 2;4;3} \right)\) không phải là vectơ chỉ phương của \[d\].
Lời giải
Chọn C
Xét đường thẳng được cho ở câu C, có một vectơ chỉ phương là \(\left( { - 2; - 1; - 1} \right) = - \left( {2;1;1} \right)\)(thỏa đề bài).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.