Câu hỏi:

16/08/2025 19 Lưu

Cho hai đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x\,\, = \,\,2\,\, + \,\,t\\y\,\, = \,\, - 1\,\, + \,\,t\\z\,\, = \,\,3\end{array} \right.\) và \({d_2}:\,\,\left\{ \begin{array}{l}x\,\, = \,\,1\,\, - \,\,t\\y\,\, = \,\,2\\z\,\, = \,\, - 2\,\, + \,\,t\end{array} \right.\). Góc giữa hai đường thẳng d1 và d2 là:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Gọi \(\overrightarrow {{u_1}} ;\,\,\overrightarrow {{u_2}} \) lần lượt là vectơ chỉ phương của đường thẳng d1; d2.

\(\overrightarrow {{u_1}} \, = \,(1;\,\,1;\,\,0);\,\,\overrightarrow {{u_2}} \,\, = \,\,( - \,1;\,\,0;\,\,1)\)

Áp dụng công thức ta có \(cos\left( {{d_1},{d_2}} \right)\,\, = \,\,\left| {\cos \left( {\overrightarrow {{u_1}} ,\,\,\overrightarrow {{u_2}} } \right)} \right|\,\, = \,\,\frac{{\left| {\overrightarrow {{u_1}} .\,\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\,\left| {\,\overrightarrow {{u_2}} } \right|}}\,\, = \,\,\frac{{\left| { - \,1} \right|}}{{\sqrt {1\,\, + \,\,1} .\sqrt {1\,\, + \,\,1} }}\,\, = \,\,\frac{1}{2}\).

(d1,d2)  =  60°

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

\({d_1}:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 2}}{{ - 2}}\)\( \Rightarrow \overrightarrow {{u_1}}  = \left( {2;1; - 2} \right)\); \({d_2}:\frac{{x + 2}}{{ - 2}} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\)\( \Rightarrow \overrightarrow {{u_2}}  = \left( { - 2; - 1;2} \right)\)

\(\overrightarrow {{u_1}}  =  - \overrightarrow {{u_2}}  \Rightarrow {d_1}//{d_2} \vee {d_1} \equiv {d_2}\)

Điểm \(M\left( {1;0; - 2} \right) \in {{\rm{d}}_1}\); \(M \notin {d_2}\) nên\({d_1}//{d_2}\)

Câu 2

Lời giải

Chọn A

\({M_1}\) là hình chiếu của \(M\) lên trục \(Ox \Rightarrow {M_1}\left( {1;0;0} \right)\).

\({M_2}\) là hình chiếu của \(M\) lên trục \(Oy \Rightarrow {M_2}\left( {0;2;0} \right)\).

Khi đó: \(\overrightarrow {{M_1}{M_2}}  = \left( { - 1;2;0} \right)\) là một vectơ chỉ phương của \({M_1}{M_2}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP