Cho mặt phẳng \((P):\,\,3x\,\, + \,\,4y\,\, + \,\,5z\,\, + \,\,2\,\, = \,\,0\) và đường thẳng d là giao tuyến của hai mặt phẳng \((\alpha ):\,\,x\,\, - \,\,2y\,\, + \,\,1\,\, = \,\,0;\,\,(\beta ):\,\,x\,\, - \,\,2z\,\, - \,\,3\,\, = \,\,0\). Gọi \(\varphi \) là góc giữa đường thẳng d và mặt phẳng (P). Khi đó:
Cho mặt phẳng \((P):\,\,3x\,\, + \,\,4y\,\, + \,\,5z\,\, + \,\,2\,\, = \,\,0\) và đường thẳng d là giao tuyến của hai mặt phẳng \((\alpha ):\,\,x\,\, - \,\,2y\,\, + \,\,1\,\, = \,\,0;\,\,(\beta ):\,\,x\,\, - \,\,2z\,\, - \,\,3\,\, = \,\,0\). Gọi \(\varphi \) là góc giữa đường thẳng d và mặt phẳng (P). Khi đó:
Quảng cáo
Trả lời:
Chọn A
Đường thẳng d có phương trình: \(\left\{ \begin{array}{l}x\,\, = \,\,2t\\y\,\, = \,\,\frac{1}{2}\,\, + \,\,t\\z\,\, = \,\, - \frac{3}{2}\,\, + \,\,t\end{array} \right.,\,\,t\,\, \in \,\,R\). Suy ra VTCP của d là \(\overrightarrow {{u_d}} (2;\,\,1;\,\,1)\)
Ta cóHot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Ta có một vectơ chỉ phương của \[d\] là \(\overrightarrow {{u_1}} = \left( { - 1;2;3} \right)\).
\(\overrightarrow {{u_2}} = - 3\overrightarrow {{u_1}} \), \(\overrightarrow {{u_3}} = - \overrightarrow {{u_1}} \) \( \Rightarrow \) các vectơ \(\overrightarrow {{u_2}} ,\overrightarrow {{u_3}} \) cũng là vectơ chỉ phương của \[d\].
Không tồn tại số \(k\) để \(\overrightarrow {{u_4}} = k\overrightarrow {.{u_1}} \) nên \(\overrightarrow {{u_4}} = \left( { - 2;4;3} \right)\) không phải là vectơ chỉ phương của \[d\].
Lời giải
Chọn C
Xét đường thẳng được cho ở câu C, có một vectơ chỉ phương là \(\left( { - 2; - 1; - 1} \right) = - \left( {2;1;1} \right)\)(thỏa đề bài).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.