Câu hỏi:

16/08/2025 20 Lưu

Cho mặt phẳng \((P):\,\,3x\,\, + \,\,4y\,\, + \,\,5z\,\, + \,\,2\,\, = \,\,0\) và đường thẳng d là giao tuyến của hai mặt phẳng \((\alpha ):\,\,x\,\, - \,\,2y\,\, + \,\,1\,\, = \,\,0;\,\,(\beta ):\,\,x\,\, - \,\,2z\,\, - \,\,3\,\, = \,\,0\). Gọi \(\varphi \) là góc giữa đường thẳng d và mặt phẳng (P). Khi đó:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Đường thẳng d có phương trình: \(\left\{ \begin{array}{l}x\,\, = \,\,2t\\y\,\, = \,\,\frac{1}{2}\,\, + \,\,t\\z\,\, = \,\, - \frac{3}{2}\,\, + \,\,t\end{array} \right.,\,\,t\,\, \in \,\,R\). Suy ra VTCP của d là \(\overrightarrow {{u_d}} (2;\,\,1;\,\,1)\)

Ta có sind,(P)=  cosud,  n=ud.nud.n  =  2.3  +  1.4  +  1.522  +  12  +  12.32  +  42  +  52  =  32
  (d,(P))  =  60°

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

\({d_1}:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 2}}{{ - 2}}\)\( \Rightarrow \overrightarrow {{u_1}}  = \left( {2;1; - 2} \right)\); \({d_2}:\frac{{x + 2}}{{ - 2}} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\)\( \Rightarrow \overrightarrow {{u_2}}  = \left( { - 2; - 1;2} \right)\)

\(\overrightarrow {{u_1}}  =  - \overrightarrow {{u_2}}  \Rightarrow {d_1}//{d_2} \vee {d_1} \equiv {d_2}\)

Điểm \(M\left( {1;0; - 2} \right) \in {{\rm{d}}_1}\); \(M \notin {d_2}\) nên\({d_1}//{d_2}\)

Câu 2

Lời giải

Chọn A

\({M_1}\) là hình chiếu của \(M\) lên trục \(Ox \Rightarrow {M_1}\left( {1;0;0} \right)\).

\({M_2}\) là hình chiếu của \(M\) lên trục \(Oy \Rightarrow {M_2}\left( {0;2;0} \right)\).

Khi đó: \(\overrightarrow {{M_1}{M_2}}  = \left( { - 1;2;0} \right)\) là một vectơ chỉ phương của \({M_1}{M_2}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP