Câu hỏi:

16/08/2025 5 Lưu

Cho mặt phẳng \((\alpha ):\,\,2x\,\, - \,\,y\,\, + \,\,2z\,\, - \,\,1\,\, = \,\,0;\,\,(\beta ):\,\,x\,\, + \,\,2y\,\, - \,\,2z\,\, - \,\,3\,\, = \,\,0\). Cosin góc giữa mặt phẳng \((\alpha )\)và mặt phẳng\(\,(\beta )\) bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

Gọi \(\overrightarrow {{n_\alpha }} \), \(\,\overrightarrow {{n_\beta }} \) lần lượt là vectơ pháp tuyến của mặt phẳng \((\alpha )\) và \((\beta )\).

Ta có \(\overrightarrow {{n_\alpha }} (2;\,\, - \,\,1;\,\,2);\,\,\overrightarrow {{n_\beta }} (1;\,\,2;\,\, - \,2)\).

Áp dụng công thức:

cos((α),(β))  =  cos(nα,  nβ)  =  nα.  nβnα.  nβ=  2.11.22.222+  (1)2  +  22.(12  +  22  +  (2)2  =  49.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn D

Ta có một vectơ chỉ phương của \[d\] là \(\overrightarrow {{u_1}}  = \left( { - 1;2;3} \right)\).

\(\overrightarrow {{u_2}}  =  - 3\overrightarrow {{u_1}} \), \(\overrightarrow {{u_3}}  =  - \overrightarrow {{u_1}} \) \( \Rightarrow \) các vectơ \(\overrightarrow {{u_2}} ,\overrightarrow {{u_3}} \) cũng là vectơ chỉ phương của \[d\].

Không tồn tại số \(k\) để \(\overrightarrow {{u_4}}  = k\overrightarrow {.{u_1}} \) nên \(\overrightarrow {{u_4}}  = \left( { - 2;4;3} \right)\) không phải là vectơ chỉ phương của \[d\].

Câu 2

Lời giải

Chọn C

Xét đường thẳng được cho ở câu C, có một vectơ chỉ phương là \(\left( { - 2; - 1; - 1} \right) =  - \left( {2;1;1} \right)\)(thỏa đề bài).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP