Quảng cáo
Trả lời:

Chọn B
Áp dụng công thức tính góc giữa hai mặt phẳng.
Xác định các vectơ pháp tuyến của mặt phẳng (P) và (Q). Thay các giá trị vào biểu thức để tìm giá trị đúng.
Dùng chức năng CALC trong máy tính bỏ túi để hỗ trợ việc tính toán nhanh nhất.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
\({d_1}:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 2}}{{ - 2}}\)\( \Rightarrow \overrightarrow {{u_1}} = \left( {2;1; - 2} \right)\); \({d_2}:\frac{{x + 2}}{{ - 2}} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\)\( \Rightarrow \overrightarrow {{u_2}} = \left( { - 2; - 1;2} \right)\)
\(\overrightarrow {{u_1}} = - \overrightarrow {{u_2}} \Rightarrow {d_1}//{d_2} \vee {d_1} \equiv {d_2}\)
Điểm \(M\left( {1;0; - 2} \right) \in {{\rm{d}}_1}\); \(M \notin {d_2}\) nên\({d_1}//{d_2}\)
Lời giải
Chọn A
\({M_1}\) là hình chiếu của \(M\) lên trục \(Ox \Rightarrow {M_1}\left( {1;0;0} \right)\).
\({M_2}\) là hình chiếu của \(M\) lên trục \(Oy \Rightarrow {M_2}\left( {0;2;0} \right)\).
Khi đó: \(\overrightarrow {{M_1}{M_2}} = \left( { - 1;2;0} \right)\) là một vectơ chỉ phương của \({M_1}{M_2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.