Trong không gian \[\overrightarrow v = \left( {a;1;2} \right)\], cho đường thẳng \[{d_2}:\left\{ \begin{array}{l}x = 1 + at'\\y = 0 + t'\\z = - 1 + 2t'\end{array} \right.\] Đường thẳng đi qua điểm \[{d_1}\] và song song với đường thẳng \[\overrightarrow u = \left( {1; - 2;1} \right)\] có phương trình là:
Trong không gian \[\overrightarrow v = \left( {a;1;2} \right)\], cho đường thẳng \[{d_2}:\left\{ \begin{array}{l}x = 1 + at'\\y = 0 + t'\\z = - 1 + 2t'\end{array} \right.\] Đường thẳng đi qua điểm \[{d_1}\] và song song với đường thẳng \[\overrightarrow u = \left( {1; - 2;1} \right)\] có phương trình là:
Quảng cáo
Trả lời:
Chọn B
Vì đường thẳng song song với đường thẳng \[\left\{ \begin{array}{l}1 + t = 1 + at'\\2 - 2t = 0 + t'\\3 + t = - 1 + 2t'\end{array} \right.\]nên nó có vectơ chỉ phương là \[\left\{ \begin{array}{l}1 + t = 1 + at'\\2 - 2t = 0 + t'\\3 + t = - 1 + 2t'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t - at' = 0\\ - 2t - t' = - 2\\t - 2t' = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 0\\t' = 2\\0 - a.2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 0\\t' = 2\\a = 0\end{array} \right. \cdot \] hoặc \[a = 0\] nên loại phương án C và D.
Vì điểm \(M\left( {2;\,1;\, - 1} \right)\)thuộc đường thẳng \(\frac{x}{1} = \frac{{y - 5}}{{ - 2}} = \frac{{z + 3}}{1}\) nên chọn phương án B.
Vậy phương trình của đường thẳng là \(\frac{x}{1} = \frac{{y - 5}}{{ - 2}} = \frac{{z + 3}}{1}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Ta có \(\overrightarrow {AB} = \left( {2; - 2;2} \right)\), \(\overrightarrow {AC} = \left( {1;0; - 1} \right)\).
Mặt phẳng \(\left( {ABC} \right)\) có một véctơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {2;4;2} \right)\).
Đường thẳng vuông góc với mặt phẳng \(\left( {ABC} \right)\) có một véctơ chỉ phương là \(\overrightarrow u = \left( {1;2;1} \right)\).
Đường thẳng đi qua \(A\) và vuông góc với mặt phẳng \(\left( {ABC} \right)\) có phương trình là\(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z + 1}}{1}\).
Lời giải
Chọn C
Cách 1:

Chọn hệ trục tọa độ \(Oxyz\) như hình vẽ.
Ta có: \(O\left( {0\,;\,0\,;\,0} \right)\), \(A\left( {0\,;\,a\,;\,0} \right)\), \(B\left( {a\,;\,0\,;\,0} \right)\), \(C\left( {0\,;\,0\,;\,a} \right)\), \(M\left( {\frac{a}{2}\,;\,\frac{a}{2}\,;\,0} \right)\).
Khi đó ta có:Cách 2:

Ta có \[\left\{ \begin{array}{l}\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right)\\\overrightarrow {BC} = \overrightarrow {OC} - \overrightarrow {OB} \end{array} \right. \Rightarrow \overrightarrow {OM} .\overrightarrow {BC} = - \frac{1}{2}O{B^2} = - \frac{{{a^2}}}{2}\].
\[BC = \sqrt {O{B^2} + O{C^2}} = a\sqrt 2 \] và \[OM = \frac{1}{2}AB = \frac{1}{2}\sqrt {O{A^2} + O{B^2}} = \frac{{a\sqrt 2 }}{2}\].
Do đó:Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.