Trong không gian \[\overrightarrow v = \left( {a;1;2} \right)\], cho đường thẳng \[{d_2}:\left\{ \begin{array}{l}x = 1 + at'\\y = 0 + t'\\z = - 1 + 2t'\end{array} \right.\] Đường thẳng đi qua điểm \[{d_1}\] và song song với đường thẳng \[\overrightarrow u = \left( {1; - 2;1} \right)\] có phương trình là:
Trong không gian \[\overrightarrow v = \left( {a;1;2} \right)\], cho đường thẳng \[{d_2}:\left\{ \begin{array}{l}x = 1 + at'\\y = 0 + t'\\z = - 1 + 2t'\end{array} \right.\] Đường thẳng đi qua điểm \[{d_1}\] và song song với đường thẳng \[\overrightarrow u = \left( {1; - 2;1} \right)\] có phương trình là:
A. \[{d_2}\]
B. \[\overrightarrow v = \left( {a;1;2} \right)\]
Quảng cáo
Trả lời:
Chọn B
Vì đường thẳng song song với đường thẳng \[\left\{ \begin{array}{l}1 + t = 1 + at'\\2 - 2t = 0 + t'\\3 + t = - 1 + 2t'\end{array} \right.\]nên nó có vectơ chỉ phương là \[\left\{ \begin{array}{l}1 + t = 1 + at'\\2 - 2t = 0 + t'\\3 + t = - 1 + 2t'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t - at' = 0\\ - 2t - t' = - 2\\t - 2t' = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 0\\t' = 2\\0 - a.2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 0\\t' = 2\\a = 0\end{array} \right. \cdot \] hoặc \[a = 0\] nên loại phương án C và D.
Vì điểm \(M\left( {2;\,1;\, - 1} \right)\)thuộc đường thẳng \(\frac{x}{1} = \frac{{y - 5}}{{ - 2}} = \frac{{z + 3}}{1}\) nên chọn phương án B.
Vậy phương trình của đường thẳng là \(\frac{x}{1} = \frac{{y - 5}}{{ - 2}} = \frac{{z + 3}}{1}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Gọi \(O = AC \cap BD\).
Tam giác \(SAO\) vuông : \(SO = \sqrt {S{A^2} - A{O^2}} = \frac{{a\sqrt 6 }}{2}\)
Gắn tọa độ như hình vẽ

\(A\left( {0;0;0} \right)\), \(B\left( {a;0;0} \right)\), \(C\left( {a;a;0} \right)\), \(D\left( {0;a;0} \right)\), \(O\left( {\frac{a}{2};\frac{a}{2};0} \right)\), \(S\left( {\frac{a}{2};\frac{a}{2};\frac{{a\sqrt 6 }}{2}} \right)\).
Vì \(G\) là trọng tâm tam giác \(SCD\) nên \(G\left( {\frac{a}{2};\frac{{5a}}{6};\frac{{a\sqrt 6 }}{6}} \right)\).
Ta có : \(\overrightarrow {AS} = \left( {\frac{a}{2};\frac{a}{2};\frac{{a\sqrt 6 }}{2}} \right)\) \( = \frac{a}{2}\left( {1;1;\sqrt 6 } \right)\), \(\overrightarrow {BG} = \left( {\frac{{ - a}}{2};\frac{{5a}}{6};\frac{{a\sqrt 6 }}{6}} \right) = \frac{a}{6}\left( { - 3;5;\sqrt 6 } \right)\).
Góc giữa đường thẳng \(BG\) với đường thẳng \(SA\) bằng:
\(\cos \left( {BG;SA} \right) = \frac{{\left| {\overrightarrow {BG} .\overrightarrow {AS} } \right|}}{{BG.AS}}\)\( = \frac{{\left| { - 3 + 5 + 6} \right|}}{{\sqrt {40} .\sqrt 8 }} = \frac{{\sqrt 5 }}{5}\).
Câu 2
Lời giải
Chọn A

Chọn hệ trục tọa độ sao cho \[A \equiv O\], như hình vẽ:
Khi đó ta có:
\[A\left( {0\,;\,0\,;\,0} \right)\], \[B\left( {2a\,;\,0\,;\,0} \right)\], \[D\left( {0\,;\,2a\,;\,0} \right)\], \[C\left( {2a\,;\,2a\,;\,0} \right)\], \[S\left( {0\,;\,0\,;\,a} \right)\], \[M\left( {0\,;\,a\,;\,\frac{a}{2}} \right)\].
\[\overrightarrow {SB} = \left( {2a\,;\,0\,;\, - a} \right)\],\[\overrightarrow {SC} = \left( {2a\,;\,2a\,;\, - a} \right)\],\[\overrightarrow {MA} = \left( {0\,;\, - a\,;\, - \frac{a}{2}} \right)\],\[\overrightarrow {MC} = \left( {2a\,;\,a\,;\, - \frac{a}{2}} \right)\].
\[\overrightarrow {{n_1}} = \left[ {\overrightarrow {SB} \,,\,\overrightarrow {SC} } \right]\]\[ = \left( {2{a^2}\,;\,0\,;\,4{a^2}} \right)\] và \[\overrightarrow {{n_2}} = \left[ {\overrightarrow {MA} \,,\,\overrightarrow {MC} } \right]\]\[ = \left( {{a^2}\,;\, - {a^2}\,;\,2{a^2}} \right)\].
Gọi \[\alpha \](\(0^\circ \le \alpha \le 90^\circ \)) là góc tạo bởi hai mặt phẳng \[\left( {AMC} \right)\]và \[\left( {SBC} \right)\].
ta có \[cos\alpha = \left| {\cos \left( {\overrightarrow {{n_1}} \,,\,\overrightarrow {{n_2}} } \right)} \right|\]\[ = \frac{{\left| {\overrightarrow {{n_1}} \,.\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|\,.\left| {\overrightarrow {{n_2}} } \right|}}\]
\[ = \frac{{10{a^4}}}{{\sqrt {20.6.{{\left( {{a^4}} \right)}^2}} }}\]\[ = \frac{5}{{\sqrt {30} }}\].
Mà \[{\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }} - 1\]\[ = {\left( {\frac{{\sqrt {30} }}{5}} \right)^2} - 1\]\[ = \frac{5}{{25}}\]. Suy ra \[\tan \alpha = \frac{{\sqrt 5 }}{5}\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.