Câu hỏi:

16/08/2025 87 Lưu

Trong không gian \(Oxyz\), mặt phẳng chứa hai đường thẳng cắt nhau \(\frac{{x - 1}}{{ - 2}} = \frac{{y + 2}}{1} = \frac{{z - 4}}{3}\) và \(\frac{{x + 1}}{1} = \frac{y}{{ - 1}} = \frac{{z + 2}}{3}\) có phương trình là

A. \( - 2x - y + 9z - 36 = 0\).                    
B. \(2x - y - z = 0\).          
C. \(6x + 9y + z + 8 = 0\).                     
D. \(6x + 9y + z - 8 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Đường thẳng \({d_1}:\frac{{x - 1}}{{ - 2}} = \frac{{y + 2}}{1} = \frac{{z - 4}}{3}\) đi qua điểm \(M\left( {1; - 2;4} \right)\), có một VTCP là \(\overrightarrow {{u_1}}  = \left( { - 2;1;3} \right)\).

Đường thẳng \({d_2}:\frac{{x + 1}}{1} = \frac{y}{{ - 1}} = \frac{{z + 2}}{3}\) có một VTCP là \(\overrightarrow {{u_2}}  = \left( {1; - 1;3} \right)\).

Mặt phẳng \(\left( P \right)\) chứa hai đường thẳng cắt nhau \({d_1},{d_2}\)\( \Rightarrow \)\(\left( P \right)\) qua điểm \(M\left( {1; - 2;4} \right),\) có một VTPT là \(\overrightarrow n  = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {6;9;1} \right)\). Phương trình mặt phẳng \(\left( P \right)\) là :

\(\left( P \right):6\left( {x - 1} \right) + 9\left( {y + 2} \right) + \left( {z - 4} \right) = 0 \Leftrightarrow 6x + 9y + z + 8 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\arccos \frac{{\sqrt 3 }}{5}\).      
B. \(\arccos \frac{{\sqrt 5 }}{5}\).    
C. \(\arccos \frac{{\sqrt 5 }}{3}\).      
D. \[\arccos \frac{{\sqrt {15} }}{5}\].

Lời giải

Chọn B

Gọi \(O = AC \cap BD\).

Tam giác \(SAO\) vuông : \(SO = \sqrt {S{A^2} - A{O^2}}  = \frac{{a\sqrt 6 }}{2}\)

Gắn tọa độ như hình vẽ

Cho hình chóp tứ giác đều SABCD có AB = a, SA = a√2. Gọi G là trọng tâm tam giác SCD (ảnh 1)

\(A\left( {0;0;0} \right)\), \(B\left( {a;0;0} \right)\), \(C\left( {a;a;0} \right)\), \(D\left( {0;a;0} \right)\), \(O\left( {\frac{a}{2};\frac{a}{2};0} \right)\), \(S\left( {\frac{a}{2};\frac{a}{2};\frac{{a\sqrt 6 }}{2}} \right)\).

Vì \(G\) là trọng tâm tam giác \(SCD\) nên \(G\left( {\frac{a}{2};\frac{{5a}}{6};\frac{{a\sqrt 6 }}{6}} \right)\).

Ta có : \(\overrightarrow {AS}  = \left( {\frac{a}{2};\frac{a}{2};\frac{{a\sqrt 6 }}{2}} \right)\) \( = \frac{a}{2}\left( {1;1;\sqrt 6 } \right)\), \(\overrightarrow {BG}  = \left( {\frac{{ - a}}{2};\frac{{5a}}{6};\frac{{a\sqrt 6 }}{6}} \right) = \frac{a}{6}\left( { - 3;5;\sqrt 6 } \right)\).

Góc giữa đường thẳng \(BG\) với đường thẳng \(SA\) bằng:

\(\cos \left( {BG;SA} \right) = \frac{{\left| {\overrightarrow {BG} .\overrightarrow {AS} } \right|}}{{BG.AS}}\)\( = \frac{{\left| { - 3 + 5 + 6} \right|}}{{\sqrt {40} .\sqrt 8 }} = \frac{{\sqrt 5 }}{5}\).

Lời giải

Chọn A

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên SA = a và vuông góc với mặt phẳng đáy (ảnh 1)

Chọn hệ trục tọa độ sao cho \[A \equiv O\], như hình vẽ:

Khi đó ta có:

\[A\left( {0\,;\,0\,;\,0} \right)\], \[B\left( {2a\,;\,0\,;\,0} \right)\], \[D\left( {0\,;\,2a\,;\,0} \right)\], \[C\left( {2a\,;\,2a\,;\,0} \right)\], \[S\left( {0\,;\,0\,;\,a} \right)\], \[M\left( {0\,;\,a\,;\,\frac{a}{2}} \right)\].

\[\overrightarrow {SB}  = \left( {2a\,;\,0\,;\, - a} \right)\],\[\overrightarrow {SC}  = \left( {2a\,;\,2a\,;\, - a} \right)\],\[\overrightarrow {MA}  = \left( {0\,;\, - a\,;\, - \frac{a}{2}} \right)\],\[\overrightarrow {MC}  = \left( {2a\,;\,a\,;\, - \frac{a}{2}} \right)\].

\[\overrightarrow {{n_1}}  = \left[ {\overrightarrow {SB} \,,\,\overrightarrow {SC} } \right]\]\[ = \left( {2{a^2}\,;\,0\,;\,4{a^2}} \right)\] và \[\overrightarrow {{n_2}}  = \left[ {\overrightarrow {MA} \,,\,\overrightarrow {MC} } \right]\]\[ = \left( {{a^2}\,;\, - {a^2}\,;\,2{a^2}} \right)\].

Gọi \[\alpha \](\(0^\circ  \le \alpha  \le 90^\circ \)) là góc tạo bởi hai mặt phẳng \[\left( {AMC} \right)\]và \[\left( {SBC} \right)\].

ta có \[cos\alpha  = \left| {\cos \left( {\overrightarrow {{n_1}} \,,\,\overrightarrow {{n_2}} } \right)} \right|\]\[ = \frac{{\left| {\overrightarrow {{n_1}} \,.\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|\,.\left| {\overrightarrow {{n_2}} } \right|}}\] =2a2.a2 +4a2.2a2(2a2)2+(4a2)2.(a2)2+(-a2)2+(a2)2

\[ = \frac{{10{a^4}}}{{\sqrt {20.6.{{\left( {{a^4}} \right)}^2}} }}\]\[ = \frac{5}{{\sqrt {30} }}\].

Mà \[{\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }} - 1\]\[ = {\left( {\frac{{\sqrt {30} }}{5}} \right)^2} - 1\]\[ = \frac{5}{{25}}\]. Suy ra \[\tan \alpha  = \frac{{\sqrt 5 }}{5}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP