Trong không gian với hệ trục tọa độ \[Oxyz\], cho hai điểm \(A\left( {1;1;0} \right)\), \(B\left( {0; - 1;2} \right)\). Biết rằng có hai mặt phẳng cùng đi qua hai điểm \(A\), \(O\) và cùng cách \(B\) một khoảng bằng \(\sqrt 3 \). Vectơ nào trong các vectơ dưới đây là một vectơ pháp tuyến của một trong hai mặt phẳng đó.
Quảng cáo
Trả lời:
Chọn C
Phương trình đường thẳng qua hai điểm \(A\), \(O\) có dạng \(\left\{ \begin{array}{l}x = t\\y = t\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - y = 0\\z = 0\end{array} \right.\).
Gọi \(\left( P \right)\) là mặt phẳng cùng đi qua hai điểm \(A\), \(O\) nên \(\left( P \right)\): \(m\left( {x - y} \right) + nz = 0\), \({m^2} + {n^2} > 0\). Khi đó véctơ pháp tuyến của \(\left( P \right)\) có dạng \(\overrightarrow n = \left( {m; - m;n} \right)\).
Ta có \(d\left( {B,\left( P \right)} \right) = \sqrt 3 \Leftrightarrow \frac{{\left| {m + 2n} \right|}}{{\sqrt {{m^2} + {m^2} + {n^2}} }} = \sqrt 3 \) \( \Leftrightarrow 2{m^2} - 4mn - {n^2} = 0 \Leftrightarrow \Leftrightarrow \left[ \begin{array}{l}\frac{m}{n} = 1\\\frac{m}{n} = \frac{1}{5}\end{array} \right.\).
Vậy một véctơ pháp tuyến của một trong hai mặt phẳng đó là \(\overrightarrow n = \left( {\frac{1}{5}n;\frac{{ - 1}}{5}n;n} \right) = \frac{n}{5}\left( {1; - 1;5} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Ta có \(\overrightarrow {AB} = \left( {2; - 2;2} \right)\), \(\overrightarrow {AC} = \left( {1;0; - 1} \right)\).
Mặt phẳng \(\left( {ABC} \right)\) có một véctơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {2;4;2} \right)\).
Đường thẳng vuông góc với mặt phẳng \(\left( {ABC} \right)\) có một véctơ chỉ phương là \(\overrightarrow u = \left( {1;2;1} \right)\).
Đường thẳng đi qua \(A\) và vuông góc với mặt phẳng \(\left( {ABC} \right)\) có phương trình là\(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z + 1}}{1}\).
Lời giải
Chọn C
Cách 1:

Chọn hệ trục tọa độ \(Oxyz\) như hình vẽ.
Ta có: \(O\left( {0\,;\,0\,;\,0} \right)\), \(A\left( {0\,;\,a\,;\,0} \right)\), \(B\left( {a\,;\,0\,;\,0} \right)\), \(C\left( {0\,;\,0\,;\,a} \right)\), \(M\left( {\frac{a}{2}\,;\,\frac{a}{2}\,;\,0} \right)\).
Khi đó ta có:Cách 2:

Ta có \[\left\{ \begin{array}{l}\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right)\\\overrightarrow {BC} = \overrightarrow {OC} - \overrightarrow {OB} \end{array} \right. \Rightarrow \overrightarrow {OM} .\overrightarrow {BC} = - \frac{1}{2}O{B^2} = - \frac{{{a^2}}}{2}\].
\[BC = \sqrt {O{B^2} + O{C^2}} = a\sqrt 2 \] và \[OM = \frac{1}{2}AB = \frac{1}{2}\sqrt {O{A^2} + O{B^2}} = \frac{{a\sqrt 2 }}{2}\].
Do đó:Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.