Câu hỏi:

16/08/2025 6 Lưu

Trong không gian với hệ trục tọa độ \[Oxyz\], cho hai điểm \(A\left( {1;1;0} \right)\), \(B\left( {0; - 1;2} \right)\). Biết rằng có hai mặt phẳng cùng đi qua hai điểm \(A\), \(O\) và cùng cách \(B\) một khoảng bằng \(\sqrt 3 \). Vectơ nào trong các vectơ dưới đây là một vectơ pháp tuyến của một trong hai mặt phẳng đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Phương trình đường thẳng qua hai điểm \(A\), \(O\) có dạng \(\left\{ \begin{array}{l}x = t\\y = t\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - y = 0\\z = 0\end{array} \right.\).

Gọi \(\left( P \right)\) là mặt phẳng cùng đi qua hai điểm \(A\), \(O\) nên \(\left( P \right)\): \(m\left( {x - y} \right) + nz = 0\), \({m^2} + {n^2} > 0\). Khi đó véctơ pháp tuyến của \(\left( P \right)\) có dạng \(\overrightarrow n  = \left( {m; - m;n} \right)\).

Ta có \(d\left( {B,\left( P \right)} \right) = \sqrt 3  \Leftrightarrow \frac{{\left| {m + 2n} \right|}}{{\sqrt {{m^2} + {m^2} + {n^2}} }} = \sqrt 3 \) \( \Leftrightarrow 2{m^2} - 4mn - {n^2} = 0 \Leftrightarrow  \Leftrightarrow \left[ \begin{array}{l}\frac{m}{n} = 1\\\frac{m}{n} = \frac{1}{5}\end{array} \right.\).

Vậy một véctơ pháp tuyến của một trong hai mặt phẳng đó là \(\overrightarrow n  = \left( {\frac{1}{5}n;\frac{{ - 1}}{5}n;n} \right) = \frac{n}{5}\left( {1; - 1;5} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn A

Ta có \(\overrightarrow {AB}  = \left( {2; - 2;2} \right)\), \(\overrightarrow {AC}  = \left( {1;0; - 1} \right)\).

Mặt phẳng \(\left( {ABC} \right)\) có một véctơ pháp tuyến là \(\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {2;4;2} \right)\).

Đường thẳng vuông góc với mặt phẳng \(\left( {ABC} \right)\) có một véctơ chỉ phương là \(\overrightarrow u  = \left( {1;2;1} \right)\).

Đường thẳng đi qua \(A\) và vuông góc với mặt phẳng \(\left( {ABC} \right)\) có phương trình là\(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z + 1}}{1}\).

Lời giải

Chọn C

Cách 1:

Cho hình chóp O.ABC có ba cạnh OA, OB, OC đôi một vuông góc và OA = OB = OC = a. Gọi M là trung điểm cạnh AB (ảnh 1)

Chọn hệ trục tọa độ \(Oxyz\) như hình vẽ.

Ta có: \(O\left( {0\,;\,0\,;\,0} \right)\), \(A\left( {0\,;\,a\,;\,0} \right)\), \(B\left( {a\,;\,0\,;\,0} \right)\), \(C\left( {0\,;\,0\,;\,a} \right)\), \(M\left( {\frac{a}{2}\,;\,\frac{a}{2}\,;\,0} \right)\).

Khi đó ta có: BC=a;0;a, OM=a2;a2;0
cosBC;OM^=BC.OMBC.OM=a22a.2.a22=12BC;OM^=120°

Cách 2:

Cho hình chóp O.ABC có ba cạnh OA, OB, OC đôi một vuông góc và OA = OB = OC = a. Gọi M là trung điểm cạnh AB (ảnh 2)

Ta có \[\left\{ \begin{array}{l}\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right)\\\overrightarrow {BC}  = \overrightarrow {OC}  - \overrightarrow {OB} \end{array} \right. \Rightarrow \overrightarrow {OM} .\overrightarrow {BC}  =  - \frac{1}{2}O{B^2} =  - \frac{{{a^2}}}{2}\].

\[BC = \sqrt {O{B^2} + O{C^2}}  = a\sqrt 2 \] và \[OM = \frac{1}{2}AB = \frac{1}{2}\sqrt {O{A^2} + O{B^2}}  = \frac{{a\sqrt 2 }}{2}\].

Do đó: cosOM,BC=OM.BCOM.BC=a22a22.a2=12OM.BC=120°

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP