Trong không gian tọa độ \(Oxyz\), cho điểm \[A\left( {1;0;0} \right)\] và đường thẳng\(d:\frac{{x - 1}}{2} = \frac{{y + 2}}{1} = \frac{{z - 1}}{2}\). Viết phương trình mặt phẳng chứa điểm \(A\) và đường thẳng \(d\)?
Trong không gian tọa độ \(Oxyz\), cho điểm \[A\left( {1;0;0} \right)\] và đường thẳng\(d:\frac{{x - 1}}{2} = \frac{{y + 2}}{1} = \frac{{z - 1}}{2}\). Viết phương trình mặt phẳng chứa điểm \(A\) và đường thẳng \(d\)?
Quảng cáo
Trả lời:
Chọn C
VTCP của \(d\) là \(\overrightarrow a = \left( {2;1;2} \right)\) và \(B\left( {1; - 2;1} \right) \in d\).
Khi đó: \[\overrightarrow {AB} = \left( {0; - 2;1} \right)\].
Do đó véc tơ pháp tuyến của mặt phẳng là \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow a } \right] = \left( {5, - 2; - 4} \right)\).
Từ đó suy ra phương trình mặt phẳng cần tìm là \(5\left( {x - 1} \right) - 2\left( {y - 0} \right) - 4\left( {z - 0} \right) = 0\) hay \[5x - 2y - 4z - 5 = 0\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Ta có \(\overrightarrow {AB} = \left( {2; - 2;2} \right)\), \(\overrightarrow {AC} = \left( {1;0; - 1} \right)\).
Mặt phẳng \(\left( {ABC} \right)\) có một véctơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {2;4;2} \right)\).
Đường thẳng vuông góc với mặt phẳng \(\left( {ABC} \right)\) có một véctơ chỉ phương là \(\overrightarrow u = \left( {1;2;1} \right)\).
Đường thẳng đi qua \(A\) và vuông góc với mặt phẳng \(\left( {ABC} \right)\) có phương trình là\(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z + 1}}{1}\).
Lời giải
Chọn C
Cách 1:

Chọn hệ trục tọa độ \(Oxyz\) như hình vẽ.
Ta có: \(O\left( {0\,;\,0\,;\,0} \right)\), \(A\left( {0\,;\,a\,;\,0} \right)\), \(B\left( {a\,;\,0\,;\,0} \right)\), \(C\left( {0\,;\,0\,;\,a} \right)\), \(M\left( {\frac{a}{2}\,;\,\frac{a}{2}\,;\,0} \right)\).
Khi đó ta có:Cách 2:

Ta có \[\left\{ \begin{array}{l}\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right)\\\overrightarrow {BC} = \overrightarrow {OC} - \overrightarrow {OB} \end{array} \right. \Rightarrow \overrightarrow {OM} .\overrightarrow {BC} = - \frac{1}{2}O{B^2} = - \frac{{{a^2}}}{2}\].
\[BC = \sqrt {O{B^2} + O{C^2}} = a\sqrt 2 \] và \[OM = \frac{1}{2}AB = \frac{1}{2}\sqrt {O{A^2} + O{B^2}} = \frac{{a\sqrt 2 }}{2}\].
Do đó:Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.