Câu hỏi:

16/08/2025 86 Lưu

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a\], cạnh bên \[SA = 2a\] và vuông góc với mặt phẳng đáy. Gọi \[M\] là trung điểm cạnh \[SD.\] Tính tang của góc tạo bởi hai mặt phẳng \[\left( {AMC} \right)\] và \[\left( {SBC} \right)\] bằng

A. \[\frac{{\sqrt 3 }}{2}.\] 
B. \[\frac{{2\sqrt 3 }}{3}.\]   
C. \[\frac{{\sqrt 5 }}{5}.\]        
D. \[\frac{{2\sqrt 5 }}{5}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Sử dụng phương pháp tọa độ trong không gian

Gắn hình chóp vào hệ trục tọa độ Oxyz. \(O \equiv A(0;0;0)\); \(B(1;0;0);D(0;1;0);C(1;1;0);S(0;0;2)\)

Do M là trung điểm của SD nên \(M\left( {0;\frac{1}{2};1} \right)\)

\(\overrightarrow {BC}  = (0;1;0);\overrightarrow {SB}  = (1;0; - 2) \Rightarrow \left[ {\overrightarrow {BC} ;\overrightarrow {SB} } \right] = \left( {2;0;1} \right)\)

\(\overrightarrow {MA}  = \left( {0;\frac{1}{2};1} \right);\overrightarrow {AC}  = (1;1;0) \Rightarrow \left[ {\overrightarrow {MA} ;\overrightarrow {AC} } \right] = \left( { - 1;1; - \frac{1}{2}} \right)\). VTPT của (AMC) là: \(\overrightarrow n  = \left( {2; - 2;1} \right)\)

\[\cos \left( {\left( {SBC} \right);\left( {AMC} \right)} \right) = \frac{{\sqrt 5 }}{3} \Rightarrow \tan \left( {\left( {SBC} \right);\left( {AMC} \right)} \right) = \sqrt {\frac{1}{{{{\left( {\frac{{\sqrt 5 }}{3}} \right)}^2}}} - 1}  = \frac{{2\sqrt 5 }}{5}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\arccos \frac{{\sqrt 3 }}{5}\).      
B. \(\arccos \frac{{\sqrt 5 }}{5}\).    
C. \(\arccos \frac{{\sqrt 5 }}{3}\).      
D. \[\arccos \frac{{\sqrt {15} }}{5}\].

Lời giải

Chọn B

Gọi \(O = AC \cap BD\).

Tam giác \(SAO\) vuông : \(SO = \sqrt {S{A^2} - A{O^2}}  = \frac{{a\sqrt 6 }}{2}\)

Gắn tọa độ như hình vẽ

Cho hình chóp tứ giác đều SABCD có AB = a, SA = a√2. Gọi G là trọng tâm tam giác SCD (ảnh 1)

\(A\left( {0;0;0} \right)\), \(B\left( {a;0;0} \right)\), \(C\left( {a;a;0} \right)\), \(D\left( {0;a;0} \right)\), \(O\left( {\frac{a}{2};\frac{a}{2};0} \right)\), \(S\left( {\frac{a}{2};\frac{a}{2};\frac{{a\sqrt 6 }}{2}} \right)\).

Vì \(G\) là trọng tâm tam giác \(SCD\) nên \(G\left( {\frac{a}{2};\frac{{5a}}{6};\frac{{a\sqrt 6 }}{6}} \right)\).

Ta có : \(\overrightarrow {AS}  = \left( {\frac{a}{2};\frac{a}{2};\frac{{a\sqrt 6 }}{2}} \right)\) \( = \frac{a}{2}\left( {1;1;\sqrt 6 } \right)\), \(\overrightarrow {BG}  = \left( {\frac{{ - a}}{2};\frac{{5a}}{6};\frac{{a\sqrt 6 }}{6}} \right) = \frac{a}{6}\left( { - 3;5;\sqrt 6 } \right)\).

Góc giữa đường thẳng \(BG\) với đường thẳng \(SA\) bằng:

\(\cos \left( {BG;SA} \right) = \frac{{\left| {\overrightarrow {BG} .\overrightarrow {AS} } \right|}}{{BG.AS}}\)\( = \frac{{\left| { - 3 + 5 + 6} \right|}}{{\sqrt {40} .\sqrt 8 }} = \frac{{\sqrt 5 }}{5}\).

Lời giải

Chọn A

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên SA = a và vuông góc với mặt phẳng đáy (ảnh 1)

Chọn hệ trục tọa độ sao cho \[A \equiv O\], như hình vẽ:

Khi đó ta có:

\[A\left( {0\,;\,0\,;\,0} \right)\], \[B\left( {2a\,;\,0\,;\,0} \right)\], \[D\left( {0\,;\,2a\,;\,0} \right)\], \[C\left( {2a\,;\,2a\,;\,0} \right)\], \[S\left( {0\,;\,0\,;\,a} \right)\], \[M\left( {0\,;\,a\,;\,\frac{a}{2}} \right)\].

\[\overrightarrow {SB}  = \left( {2a\,;\,0\,;\, - a} \right)\],\[\overrightarrow {SC}  = \left( {2a\,;\,2a\,;\, - a} \right)\],\[\overrightarrow {MA}  = \left( {0\,;\, - a\,;\, - \frac{a}{2}} \right)\],\[\overrightarrow {MC}  = \left( {2a\,;\,a\,;\, - \frac{a}{2}} \right)\].

\[\overrightarrow {{n_1}}  = \left[ {\overrightarrow {SB} \,,\,\overrightarrow {SC} } \right]\]\[ = \left( {2{a^2}\,;\,0\,;\,4{a^2}} \right)\] và \[\overrightarrow {{n_2}}  = \left[ {\overrightarrow {MA} \,,\,\overrightarrow {MC} } \right]\]\[ = \left( {{a^2}\,;\, - {a^2}\,;\,2{a^2}} \right)\].

Gọi \[\alpha \](\(0^\circ  \le \alpha  \le 90^\circ \)) là góc tạo bởi hai mặt phẳng \[\left( {AMC} \right)\]và \[\left( {SBC} \right)\].

ta có \[cos\alpha  = \left| {\cos \left( {\overrightarrow {{n_1}} \,,\,\overrightarrow {{n_2}} } \right)} \right|\]\[ = \frac{{\left| {\overrightarrow {{n_1}} \,.\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|\,.\left| {\overrightarrow {{n_2}} } \right|}}\] =2a2.a2 +4a2.2a2(2a2)2+(4a2)2.(a2)2+(-a2)2+(a2)2

\[ = \frac{{10{a^4}}}{{\sqrt {20.6.{{\left( {{a^4}} \right)}^2}} }}\]\[ = \frac{5}{{\sqrt {30} }}\].

Mà \[{\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }} - 1\]\[ = {\left( {\frac{{\sqrt {30} }}{5}} \right)^2} - 1\]\[ = \frac{5}{{25}}\]. Suy ra \[\tan \alpha  = \frac{{\sqrt 5 }}{5}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP