PHẦN III. Câu trắc nghiệm trả lời ngắn (Thí sinh trả lời từ Câu 17 đến Câu 22)
Cho hệ phương trình \(\left\{ \begin{array}{l}ax + 6y = 5\\5x + by = 4\end{array} \right.\) nhận cặp số \[\left( {2\,;\,\, - 1} \right)\] làm nghiệm. Tính tổng bình phương của \[a\] và \[b\] (làm tròn đến hàng phần mười).
PHẦN III. Câu trắc nghiệm trả lời ngắn (Thí sinh trả lời từ Câu 17 đến Câu 22)
Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 9 có đáp án !!
Quảng cáo
Trả lời:

Đáp án: 66,3.
Vì cặp số \[\left( {2\,;\,\, - 1} \right)\] là nghiệm của hệ phương trình, ta thay \[x = 2\] và \[y = - 1\] vào hệ phương trình đã cho, ta được: \(\left\{ \begin{array}{l}a \cdot 2 + 6 \cdot \left( { - 1} \right) = 5\\5 \cdot 2 + b \cdot \left( { - 1} \right) = 4\end{array} \right.\) hay \(\left\{ \begin{array}{l}2a - 6 = 5\\10 - b = 4\end{array} \right..\)
Giải hệ phương trình ta được: \(\left\{ \begin{array}{l}2a = 11\\b = 6\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}a = \frac{{11}}{2}\\b = 6\end{array} \right..\)
Tổng bình phương của \[a\] và \[b\] là: \({a^2} + {b^2} = {\left( {\frac{{11}}{2}} \right)^2} + {6^2} = \frac{{121}}{4} + 36 = 66,25 \approx 66,3.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 120.
Đổi 20 phút \( = \frac{1}{3}\) giờ.
Gọi quãng đường \[AB\] là \[x\,\,\left( {{\rm{km}}} \right)\,\,\left( {x > 0} \right).\]
Thời gian đi từ A đến B là \(\frac{x}{{40}}\) (giờ).
Lúc về người đó tăng vận tốc thêm 5 km/h nên vận tốc lúc về của người đó là \[40 + 5 = 45\,\,\left( {{\rm{km/h}}} \right).\]
Thời gian đi từ B về A là \(\frac{x}{{45}}\) (giờ).
Vì thời gian lúc về ít hơn thời gian lúc đi là 20 phút (\( = \frac{1}{3}\) giờ) nên ta có phương trình:
\(\frac{x}{{40}} - \frac{x}{{45}} = \frac{1}{3}\)
\(\frac{{9x}}{{360}} - \frac{{8x}}{{360}} = \frac{1}{3}\)
\(9x - 8x = 120\)
\(x = 120\) (TMĐK).
Vậy quãng đường AB là 120 km.
Lời giải
Đáp án: a) Đúng. b) Sai. c) Sai. d) Đúng.
a) Xét \[ABC\] cân tại \[A\] có \[AM\] là đường trung tuyến nên đồng thời là đường phân giác và đường cao của tam giác.
Xét \[\Delta ABM\] vuông tại \[M,\] khi đó \[\widehat {BAM}\] và B là hai góc phụ nhau, nên sin BAM cos B cos . Do đó ý a) Đúng.
b) và c)
Xét \[\Delta ABM\] vuông tại \[M,\] ta có: \(\cos B = \frac{{BM}}{{AB}}\,;\,\,\sin B = \frac{{AM}}{{AB}}.\)
Suy ra \[BM = AB \cdot \cos B = 2a \cdot \cos a\] và \[AM = \;AB \cdot \sin B = \;2a \cdot \sin \alpha .\]
Do đó ý b) và c) đều Sai.
d) Ta có \[BC = 2BM = 2 \cdot 2a \cdot \cos \alpha = 4a \cdot \cos \alpha .\]
Diện tích tam giác \[ABC\] là: \[S = \frac{1}{2} \cdot AM \cdot BC = \frac{1}{2} \cdot \left( {2a \cdot \sin \alpha } \right) \cdot \left( {4a \cdot \cos \alpha } \right) = 4{a^2} \cdot \sin \alpha \cdot \cos \alpha .\]
Do đó ý d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.