Bạn An gieo một con xúc xắc 50 lần và thống kê lại kết quả các lần gieo ở bảng sau:
Mặt |
1 chấm |
2 chấm |
3 chấm |
4 chấm |
5 chấm |
6 chấm |
Số lần xuất hiện |
8 |
9 |
9 |
5 |
6 |
13 |
Xác suất thực nghiệm của biến cố “Gieo được mặt có số chấm là số lẻ” sau 50 lần thử trên là
Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 9 có đáp án !!
Quảng cáo
Trả lời:

Đáp án đúng là: A
Trong 50 lần thử, số lần gieo được mặt có số chấm là số lẻ là: \[8 + 9 + 6 = 23\] (lần).
Xác suất thực nghiệm của biến cố “Gieo được mặt có số chấm là số lẻ” sau 50 lần thử trên là: \(\frac{{23}}{{50}} = 0,46.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thể tích hình chóp tam giác đều là: \(V = \frac{1}{3} \cdot S \cdot h,\) suy ra \(h = \frac{{3V}}{S}.\)
Chiều cao của khối rubik là: \(\frac{{3 \cdot 44,002}}{{22,45}} = 5,88\,\,{\rm{(cm)}}.\)
Vậy chiều cao của khối rubik là \(5,88\,\,{\rm{cm}}{\rm{.}}\)
Lời giải
Đáp án: 66,3.
Vì cặp số \[\left( {2\,;\,\, - 1} \right)\] là nghiệm của hệ phương trình, ta thay \[x = 2\] và \[y = - 1\] vào hệ phương trình đã cho, ta được: \(\left\{ \begin{array}{l}a \cdot 2 + 6 \cdot \left( { - 1} \right) = 5\\5 \cdot 2 + b \cdot \left( { - 1} \right) = 4\end{array} \right.\) hay \(\left\{ \begin{array}{l}2a - 6 = 5\\10 - b = 4\end{array} \right..\)
Giải hệ phương trình ta được: \(\left\{ \begin{array}{l}2a = 11\\b = 6\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}a = \frac{{11}}{2}\\b = 6\end{array} \right..\)
Tổng bình phương của \[a\] và \[b\] là: \({a^2} + {b^2} = {\left( {\frac{{11}}{2}} \right)^2} + {6^2} = \frac{{121}}{4} + 36 = 66,25 \approx 66,3.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.