Câu hỏi:

20/08/2025 32 Lưu

Một người đi xe máy từ \[A\] đến \[B\] với vận tốc 40 km /h. Lúc về người đó tăng vận tốc thêm 5 km /h , biết thời gian lúc về ít hơn thời gian lúc đi 20 phút. Tính quãng đường \[AB.\] (đơn vị: km)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 120.

Đổi 20 phút \( = \frac{1}{3}\) giờ.

Gọi quãng đường \[AB\] \[x\,\,\left( {{\rm{km}}} \right)\,\,\left( {x > 0} \right).\]

Thời gian đi từ A đến B \(\frac{x}{{40}}\) (giờ).

Lúc về người đó tăng vận tốc thêm 5 km/h nên vận tốc lúc về của người đó là \[40 + 5 = 45\,\,\left( {{\rm{km/h}}} \right).\]

Thời gian đi từ B về A \(\frac{x}{{45}}\) (giờ).

Vì thời gian lúc về ít hơn thời gian lúc đi là 20 phút (\( = \frac{1}{3}\) giờ) nên ta có phương trình:

\(\frac{x}{{40}} - \frac{x}{{45}} = \frac{1}{3}\)

\(\frac{{9x}}{{360}} - \frac{{8x}}{{360}} = \frac{1}{3}\)

\(9x - 8x = 120\)

\(x = 120\) (TMĐK).

Vậy quãng đường AB là 120 km.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Trong 50 lần thử, số lần gieo được mặt có số chấm là số lẻ là: \[8 + 9 + 6 = 23\] (lần).

Xác suất thực nghiệm của biến cố “Gieo được mặt có số chấm là số lẻ” sau 50 lần thử trên là: \(\frac{{23}}{{50}} = 0,46.\)

Lời giải

Đáp án: 5,88.

Thể tích hình chóp tam giác đều là: \(V = \frac{1}{3} \cdot S \cdot h,\) suy ra \(h = \frac{{3V}}{S}.\)

Chiều cao của khối rubik là: \(\frac{{3 \cdot 44,002}}{{22,45}} = 5,88\,\,{\rm{(cm)}}.\)

Vậy chiều cao của khối rubik là \(5,88\,\,{\rm{cm}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP