(2,0 điểm) Giải các phương trình, hệ phương trình sau:
a) \[{\left( {x + 5} \right)^2} - 3\left( {x + 5} \right) = 0.\]
b) \(\frac{{x + 3}}{{x - 3}} - \frac{8}{x} = \frac{{18 + {x^2}}}{{x\left( {x - 3} \right)}}.\)
c) \[\left\{ \begin{array}{l}7x + 4y = 10\\4x + y = 7\end{array} \right..\]
(2,0 điểm) Giải các phương trình, hệ phương trình sau:
a) \[{\left( {x + 5} \right)^2} - 3\left( {x + 5} \right) = 0.\]
b) \(\frac{{x + 3}}{{x - 3}} - \frac{8}{x} = \frac{{18 + {x^2}}}{{x\left( {x - 3} \right)}}.\)
c) \[\left\{ \begin{array}{l}7x + 4y = 10\\4x + y = 7\end{array} \right..\]
Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 9 có đáp án !!
Quảng cáo
Trả lời:

a) \[{\left( {x + 5} \right)^2} - 3\left( {x + 5} \right) = 0.\] \[\left( {x + 5} \right)\left( {x + 5 - 3} \right)\; = 0\] \[\left( {x + 5} \right)\left( {x + 2} \right)\; = 0\] \[x + 5\; = 0\] hoặc \[x + 2\; = 0\] \[x = - 5\] hoặc \[x = - 2.\] Vậy phương trình đã cho có nghiệm là \[x = - 5\] và \[x = - 2.\] c) \[\left\{ \begin{array}{l}7x + 4y = 10\\4x + y = 7\end{array} \right..\] Từ phương trình thứ hai ta có \[y = 7 - 4x\]. Thế vào phương trình thứ nhất, ta được: \[7x + 4\left( {7 - 4x} \right) = 10\] \[7x + 28 - 16x = 10\] \[16x - 7x = 28 - 10\] \[9x = 18\] \[x = 2\]. Từ đó, ta có \(y = - 1.\) Vậy hệ phương trình đã cho có nghiệm là \[\left( {2\,;\,\,1} \right).\] |
b) \(\frac{{x + 3}}{{x - 3}} - \frac{8}{x} = \frac{{18 + {x^2}}}{{x\left( {x - 3} \right)}}\) (ĐKXĐ: \(x \ne 0\,;\,\,x \ne 3).\) \(\frac{{x\left( {x + 3} \right)}}{{x\left( {x - 3} \right)}} - \frac{{8\left( {x - 3} \right)}}{{x\left( {x - 3} \right)}} = \frac{{18 + {x^2}}}{{x\left( {x - 3} \right)}}\) \(x\left( {x + 3} \right) - 8\left( {x - 3} \right) = 18 + {x^2}\) \({x^2} + 3x - 8x + 24 = 18 + {x^2}\) \(8x - 3x = 24 - 18\) \(5x = 6\) \(x = \frac{6}{5}\) (TMĐK). Vậy phương trình đã cho có nghiệm là \(x = \frac{6}{5}.\)
|
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đổi: 200 nghìn đồng \[ = 0,2\] triệu.
Gọi \[x\] (triệu đồng) là giá mới mà cửa hàng bán một chiếc máy tính \[(x > 18)\].
Số tiền cửa hàng bị giảm khi bán một chiếc máy tính là \[22--x\] ( triệu đồng).
Khi đó, số lượng máy tính bán ra được trong một năm là:
\[500 + 50\left( {22 - x} \right):0,2 = 6\,\,000 - 250x\] (chiếc)
Lợi nhuận mà doanh nghiệp thu được khi bán giá mới là
\[\left( {6\,\,000--250x} \right)\left( {x--18} \right) = - 250{x^2} + 10\,\,500x--108\,\,000\]
\[ = - 250\left( {{x^2}--42x + 432} \right)\]\[ = - 250{\left( {x - 21} \right)^2} + 2\,\,250 < 2\,\,250\].
Vậy giá bán mới một chiếc máy tính của cửa hàng là 21 triệu đồng, giá trị lợi nhuận thu được cao nhất là \[2\,\,250\] triệu đồng.
Lời giải
1) a) Ta có bảng thống kê tổng thu nhập của người lao động Việt Nam trong sản xuất thiết bị điện qua các năm như sau:
Năm |
2017 |
2018 |
2019 |
2020 |
Tổng thu nhập (tỷ đồng) |
\[19\,\,112\] |
\[21\,\,474\] |
\[24\,\,081\] |
\[26\,\,546\] |
b) Tổng thu nhập của người lao động Việt nam trong sản xuất thiết bị điện năm 2017 giảm so với năm 2019 là: \(100\% \cdot \left( {1 - \frac{{19\,\,112}}{{24\,\,081}}} \right) \approx 20,6\% .\)
Vậy nhận định của bài báo là hoàn toàn chính xác.
2) a) Biến cố “Mũi tên chỉ vào hình quạt ghi số nhỏ hơn 4”.
Các kết quả thuận lợi của biến cố: \[1\,;\,\,2\,;\,\,3.\]
Xác suất của các biến cố là \(\frac{3}{8}.\)
b) Biến cố “Mũi tên chỉ vào hình quạt ghi số nguyên tố”.
Các kết quả thuận lợi của biến cố: \[2\,;\,\,3\,;\,\,5\,;\,\,7.\]
Xác suất của các biến cố là: \(\frac{4}{8} = \frac{1}{2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.