Câu hỏi:

21/08/2025 2 Lưu

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4y - 2z - 3 = 0\). Tọa độ tâm \(I\) của mặt cầu \(\left( S \right)\) là:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có: \({x^2} + {y^2} + {z^2} + 2x - 4y - 2z - 3 = 0 \Leftrightarrow {\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 9\).

Từ đó suy ra mặt cầu \(\left( S \right)\) có tâm là: 1;2;1

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn C

Trong không gian với hệ trục tọa độ \[Oxyz\], mặt cầu \[\left( S \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\] có tâm \(I\left( {a;\,\,b;\,\,c} \right)\) và bán kính \(R\).

Nên mặt cầu \[{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 4} \right)^2} = 20\] có tâm và bán kính là \[I\left( {1; - 2;4} \right),\,R = 2\sqrt 5 .\]

Lời giải

Chọn D

Ta có \(\left( S \right):\,\,{x^2} + {y^2} + {z^2} - 2x + 2y - 7 = 0 \Leftrightarrow \,\,{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 9\)

Vậy bán kính của mặt cầu bằng \(3.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP