Trong không gian \[Oxyz\], cho hai điểm \(I\left( {1;1;1} \right)\) và \(A\left( {1;2;3} \right)\). Phương trình của mặt cầu có tâm \(I\) và đi qua \(A\) là
Trong không gian \[Oxyz\], cho hai điểm \(I\left( {1;1;1} \right)\) và \(A\left( {1;2;3} \right)\). Phương trình của mặt cầu có tâm \(I\) và đi qua \(A\) là
Quảng cáo
Trả lời:

Chọn B
Bán kính của mặt cầu: \(r = IA = \sqrt {{0^2} + {1^2} + {2^2}} = \sqrt 5 \).
Phương trình mặt cầu: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 5\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Tâm \(I\) của mặt cầu là trung điểm đoạn \(MN\)\( \Rightarrow \)\(I\left( {1;2;1} \right)\).
Bán kính mặt cầu \(R = \frac{{MN}}{2} = \frac{{\sqrt {{{\left( { - 1 - 3} \right)}^2} + {{\left( {6 + 2} \right)}^2} + {{\left( { - 3 - 5} \right)}^2}} }}{2} = 6\).
Vậy phương trình mặt cầu là \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 36\].
Lời giải
Chọn D
Bán kính mặt cầu là \(R = IA = \sqrt 3 \).
Phương trình mặt cầu tâm \(I(2;3;4)\) và \(R = IA = \sqrt 3 \) là \({(x - 2)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 4} \right)^2} = 3\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.