Trong không gian \[Oxyz\]có tất cả bao nhiêu giá trị nguyên \[m\] để phương trình
\[{x^2} + {y^2} + {z^2} + 4mx + 2my - 2mz + 9{m^2} - 28 = 0\] là phương trình mặt cầu?
Quảng cáo
Trả lời:

Chọn A
Ta có \[{x^2} + {y^2} + {z^2} + 4mx + 2my - 2mz + 9{m^2} - 28 = 0\]
\[ \Leftrightarrow {\left( {x + 2m} \right)^2} + {\left( {y + m} \right)^2} + {\left( {z - m} \right)^2} = 28 - 3{m^2}\] \[\left( 1 \right)\].
\[\left( 1 \right)\] là phương trình mặt cầu \[ \Leftrightarrow 28 - 3{m^2} > 0 \Leftrightarrow - \sqrt {\frac{{28}}{3}} < m < \sqrt {\frac{{28}}{3}} \].
Do \[m\] nguyên nên \[m \in \left\{ { - 3\,;\, - 2\,;\, - 1\,;\,0\,;\,1\,;\,2\,;\,3} \right\}\].
Vậy có \[7\] giá trị của \(m\) thỏa mãn yêu cầu bài toán.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A

Ta dễ dàng chứng minh được: \({\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1\)
Mặt cầu \(\left( S \right)\) có tâm \(I\left( {\cos \alpha ;\cos \beta ;\cos \gamma } \right)\).
Suy ra tâm \(I\) thuộc mặt cầu \(\left( {S'} \right)\)có tâm \(O\left( {0;0;0} \right),R = \sqrt {{{\cos }^2}\alpha + {{\cos }^2}\beta + {{\cos }^2}\gamma } = 1\)
Mặt cầu \(\left( S \right)\) luôn tiếp xúc với hai mặt cầu \(\left( {{S_1}} \right),\left( {{S_2}} \right)\).
Mặt cầu \(\left( {{S_1}} \right)\) có tâm là \(O\), bán kính \({R_1} = \left| {OI - R} \right| = \left| {1 - 2} \right| = 1\).
Mặt cầu \(\left( {{S_2}} \right)\) có tâm là \(O\), bán kính \({R_2} = OI + R = 1 + 2 = 3\).
Vậy tổng diện tích hai mặt cầu bằng \(4\pi \left( {R_1^2 + R_2^2} \right) = 4\pi \left( {{1^2} + {3^2}} \right) = 40\pi \).
Lời giải
Chọn D
Phương trình đã cho là phương trình mặt cầu khi và chỉ khi
\(\begin{array}{l}{\left( {m + 2} \right)^2} + {\left( {m - 1} \right)^2} - 3{m^2} + 5 > 0\\ \Leftrightarrow {m^2} - 2m - 10 < 0\\ \Leftrightarrow - 1 - \sqrt {11} < m < 1 + \sqrt {11} \end{array}\)
Theo bài ra \(m \in \mathbb{Z} \Rightarrow m = \left\{ {\left. { - 2;\, - 1;\,0;\,1;\,2;\,3;\,4} \right\}} \right. \Rightarrow \) có \(7\) giá trị của \(m\) nguyên thỏa mãn bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.