Phương trình nào sau đây là phương trình mặt cầu \(\left( S \right)\) tâm \(A\left( {2;\,1;\,0} \right)\), đi qua điểm \(B\left( {0;\,1;\,2} \right)\)?
Phương trình nào sau đây là phương trình mặt cầu \(\left( S \right)\) tâm \(A\left( {2;\,1;\,0} \right)\), đi qua điểm \(B\left( {0;\,1;\,2} \right)\)?
Quảng cáo
Trả lời:

Chọn B
Vì mặt cầu \(\left( S \right)\) có tâm \(A\left( {2;\,1;\,0} \right)\), đi qua điểm \(B\left( {0;\,1;\,2} \right)\) nên mặt cầu \(\left( S \right)\) có tâm \(A\left( {2;\,1;\,0} \right)\) và nhận độ dài đoạn thẳng \(AB\) là bán kính.
Ta có: \(\overrightarrow {AB} = \left( { - 2:\,0;\,2} \right)\). \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( { - 2} \right)}^2} + {0^2} + {2^2}} = 2\sqrt 2 \). Suy ra: \(R = 2\sqrt 2 \).
Vậy: \(\left( S \right):\,\,{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 8\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Tâm \(I\) của mặt cầu là trung điểm đoạn \(MN\)\( \Rightarrow \)\(I\left( {1;2;1} \right)\).
Bán kính mặt cầu \(R = \frac{{MN}}{2} = \frac{{\sqrt {{{\left( { - 1 - 3} \right)}^2} + {{\left( {6 + 2} \right)}^2} + {{\left( { - 3 - 5} \right)}^2}} }}{2} = 6\).
Vậy phương trình mặt cầu là \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 36\].
Lời giải
Chọn A
Phương trình mặt cầu \[\left( S \right)\] có tâm \[I\left( {1;\,\,2;\,\, - 1} \right)\] và bán kính \[R = 2\] là \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 4\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.