Câu hỏi:

21/08/2025 2 Lưu

Trong không gian \(Oxyz\), cho điểm \(M\left( {1; - 2;3} \right)\). Gọi \(I\) là hình chiếu vuông góc của \(M\) trên trục \(Ox\). Phương trình nào sau đây là phương trình mặt cầu tâm \(I\) bán kính \(IM\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Với điểm \(M\left( {1; - 2;3} \right)\) thì hình chiếu vuông góc của \(M\) trên trục \(Ox\) là \(I\left( {1;0;0} \right)\)

Có \(IM = \sqrt {13} \) vậy phương trình mặt cầu tâm \(I\left( {1;0;0} \right)\) bán kính \(IM\) là: \({\left( {x - 1} \right)^2} + {y^2} + {z^2} = 13\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn D

Tâm \(I\) của mặt cầu là trung điểm đoạn \(MN\)\( \Rightarrow \)\(I\left( {1;2;1} \right)\).

Bán kính mặt cầu \(R = \frac{{MN}}{2} = \frac{{\sqrt {{{\left( { - 1 - 3} \right)}^2} + {{\left( {6 + 2} \right)}^2} + {{\left( { - 3 - 5} \right)}^2}} }}{2} = 6\).

Vậy phương trình mặt cầu là \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 36\].

Câu 2

Lời giải

Chọn A

Phương trình mặt cầu \[\left( S \right)\] có tâm \[I\left( {1;\,\,2;\,\, - 1} \right)\] và bán kính \[R = 2\] là \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 4\].

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP