Câu hỏi:

21/08/2025 35 Lưu

Trong không gian \(Oxyz\), cho điểm \(M\left( {1; - 2;3} \right)\). Gọi \(I\) là hình chiếu vuông góc của \(M\) trên trục \(Ox\). Phương trình nào sau đây là phương trình mặt cầu tâm \(I\) bán kính \(IM\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Với điểm \(M\left( {1; - 2;3} \right)\) thì hình chiếu vuông góc của \(M\) trên trục \(Ox\) là \(I\left( {1;0;0} \right)\)

Có \(IM = \sqrt {13} \) vậy phương trình mặt cầu tâm \(I\left( {1;0;0} \right)\) bán kính \(IM\) là: \({\left( {x - 1} \right)^2} + {y^2} + {z^2} = 13\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Trong hệ trục tọa độ Oxyz, cho mặt cầu S: (x-cosa)^2 + (y-cosB)^2 + (z-cosy)^2 = 4 với a, b và y lần lượt là ba góc tạo bởi tia Ot bất kì (ảnh 1)

Ta dễ dàng chứng minh được: \({\cos ^2}\alpha  + {\cos ^2}\beta  + {\cos ^2}\gamma  = 1\)

Mặt cầu \(\left( S \right)\) có tâm \(I\left( {\cos \alpha ;\cos \beta ;\cos \gamma } \right)\).

Suy ra tâm \(I\) thuộc mặt cầu \(\left( {S'} \right)\)có tâm \(O\left( {0;0;0} \right),R = \sqrt {{{\cos }^2}\alpha  + {{\cos }^2}\beta  + {{\cos }^2}\gamma }  = 1\)

Mặt cầu \(\left( S \right)\) luôn tiếp xúc với hai mặt cầu \(\left( {{S_1}} \right),\left( {{S_2}} \right)\).

Mặt cầu \(\left( {{S_1}} \right)\) có tâm là \(O\), bán kính \({R_1} = \left| {OI - R} \right| = \left| {1 - 2} \right| = 1\).

Mặt cầu \(\left( {{S_2}} \right)\) có tâm là \(O\), bán kính \({R_2} = OI + R = 1 + 2 = 3\).

Vậy tổng diện tích hai mặt cầu bằng \(4\pi \left( {R_1^2 + R_2^2} \right) = 4\pi \left( {{1^2} + {3^2}} \right) = 40\pi \).

Lời giải

Chọn D

Phương trình đã cho là phương trình mặt cầu khi và chỉ khi

\(\begin{array}{l}{\left( {m + 2} \right)^2} + {\left( {m - 1} \right)^2} - 3{m^2} + 5 > 0\\ \Leftrightarrow {m^2} - 2m - 10 < 0\\ \Leftrightarrow  - 1 - \sqrt {11}  < m < 1 + \sqrt {11} \end{array}\)

Theo bài ra \(m \in \mathbb{Z} \Rightarrow m = \left\{ {\left. { - 2;\, - 1;\,0;\,1;\,2;\,3;\,4} \right\}} \right. \Rightarrow \) có \(7\) giá trị của \(m\) nguyên thỏa mãn bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP