Câu hỏi:

21/08/2025 2 Lưu

Trong không gian với hệ tọa độ \[Oxyz\], mặt cầu tâm \[I\left( {2;1; - 3} \right)\] và tiếp xúc với trục \[Oy\] có phương trình là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Gọi \[M\] là hình chiếu của \[I\] trên \[Oy\]\[ \Rightarrow M\left( {0;1;0} \right)\]

Mặt cầu \[\left( S \right)\] tâm \[I\left( {2;1; - 3} \right)\] và tiếp xúc với trục \[Oy\] có bán kính \[IM = \sqrt {13} \].

Vậy \[\left( S \right)\] có phương trình \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 3} \right)^2} = 13\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn D

Tâm \(I\) của mặt cầu là trung điểm đoạn \(MN\)\( \Rightarrow \)\(I\left( {1;2;1} \right)\).

Bán kính mặt cầu \(R = \frac{{MN}}{2} = \frac{{\sqrt {{{\left( { - 1 - 3} \right)}^2} + {{\left( {6 + 2} \right)}^2} + {{\left( { - 3 - 5} \right)}^2}} }}{2} = 6\).

Vậy phương trình mặt cầu là \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 36\].

Câu 2

Lời giải

Chọn D

Bán kính mặt cầu là \(R = IA = \sqrt 3 \).

Phương trình mặt cầu tâm \(I(2;3;4)\) và \(R = IA = \sqrt 3 \) là \({(x - 2)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 4} \right)^2} = 3\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP