Câu hỏi:

23/08/2025 6 Lưu

Chuồng 1 có 5 con gà mái, 2 con gà trống. Chuồng II có 3 con gà mái, 5 con gà trống. Bác Mai bắt một con gà trong số đó theo cách sau: "Bác tung một con xúc xắc cân đối, đồng chất. Nếu số chấm chia hết cho 3 thì bác chọn chuồng I . Nếu số chấm không chia hết cho 3 thì bác chọn chuồng II. Sau đó, từ chuồng đã chọn bác bắt ngẫu nhiên một con gà”. Tính xác suất để bác Mai bắt được con gà mái.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi A là biến cố: “Chọn chuồng I";

\(B\) là biến cố: "Bắt được gà mái".

Vi nếu tung xúc xắc mà số chấm xuất hiện chia hết cho 3 thì bác chọn chuồng I nên ta có \(P(A) = \frac{2}{6} = \frac{1}{3}\). Suy ra \(P(\bar A) = 1 - P(A) = \frac{2}{3}\).

Từ dữ kiện bài ra, ta suy ra được: \(P(B\mid A) = \frac{5}{7},P(B\mid \bar A) = \frac{3}{8}\)

Áp dụng công thức xác suất toàn phần, ta có:

\({\rm{P}}({\rm{B}}) = {\rm{P}}({\rm{A}}) \cdot {\rm{P}}({\rm{B}}\mid {\rm{A}}) + P(\bar A) \cdot P(B\mid \bar A) = \frac{1}{3} \cdot \frac{5}{7} + \frac{2}{3} \cdot \frac{3}{8} = \frac{{41}}{{84}} \approx 0,4881\)

Vậy xác suất để bác Mai bắt được con gà mái là 0,4881 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố: "Thứ Ba, ông An đi làm bằng xe máy"; \(B\) là biến cố: "Thứ Tư, ông An đi làm bằng xe máy". Ta cần tính \(P(B)\). Theo công thức xác suất toàn phần, ta có:

\(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A).\)

- Tính \(P(A)\) : Vi thứ Hai, ông An đi làm bằng xe buýt nên xác suất để thứ Ba (hôm sau), ông đi làm bằng xe máy là 0,4 . Vậy \(P(A) = 0,4\).

- Tính \(P(\bar A)\) : Ta có \(P(\bar A) = 1 - 0,4 = 0,6\).

- Tính \(P(B\mid A)\) : Đây là xác suất để thứ Tư, ông An đi làm bằng xe máy nếu thứ Ba, ông An đi làm bằng xe máy.

- Theo giả thiết, nếu hôm nay ông đi làm bằng xe máy thì xác suất để hôm sau ông đi làm bằng xe buýt là 0,7 và đi làm bằng xe máy là \(1 - 0,7 = 0,3\). Do đó, nếu thứ Ba , ông An đi làm bằng xe máy thì xác suất để thứ Tư, ông đi làm bằng xe máy là 0,3 . Vậy \(P(B\mid A) = 0,3\).

- Tính \(P(B\mid \bar A)\) : Đây là xác suất để thứ Tư, ông An đi làm bằng xe máy nếu thứ Ba ông An đi làm bằng xe buýt. Theo giả thiết, né́u hôm nay ông đi làm bằng xe buýt thì xác suất để hôm sau ông đi làm bằng xe máy là 0,4 . Do đó nếu thứ Ba, ông An đi làm bằng xe buýt thì

\(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A) = 0,4 \cdot 0,3 + 0,6 \cdot 0,4 = 0,36.\)

Lời giải

\({\rm{ a) }}\Omega  = \{ 1;2;3; \ldots ;24\} .\)

\(A = \{ 3;6;9;12;15;18;21;24\} .\)

\(B = \{ 4;8;12;16;20;24\} .\)

\(A \cap B = \{ 12;24\} \).

\(\bar B = \{ 1;2;3;5;6;7;9;10;11;13;14;15;17;18;19;21;22;23\} {\rm{. }}\)

\(A \cap \bar B = \{ 3;6;9;15;18;21\} \).

b) Từ câu a), suy ra \(n(A) = 8,n(A \cap B) = 2,n(A \cap \bar B) = 6\).

Do \(8 = 2 + 6\) nên \(n(A) = n(A \cap B) + n(A \cap \bar B)\).

Khi đó, \({\rm{P}}({\rm{A}}) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{n(A \cap B) + n(A \cap B)}}{{n(\Omega )}} = \frac{{n(A \cap B)}}{{n(\Omega )}} + \frac{{n(A \cap B)}}{{n(\Omega )}}\).

Mà \({\rm{P}}({\rm{A}} \cap {\rm{B}}) = \frac{{n(A \cap B)}}{{n(\Omega )}};{\rm{P}}(A \cap \bar B) = \frac{{n(A \cap \bar B)}}{{n(\Omega )}}\).

Vậy \({\rm{P}}({\rm{A}}) = {\rm{P}}({\rm{A}} \cap {\rm{B}}) + {\rm{P}}(A \cap \bar B)\).

c) Ta có \({\rm{P}}({\rm{B}}) \cdot {\rm{P}}({\rm{A}}\mid {\rm{B}}) = {\rm{P}}({\rm{B}}) \cdot \frac{{P(A \cap B)}}{{P(B)}} = {\rm{P}}({\rm{A}} \cap {\rm{B}})\).

\({\rm{P}}(\bar B) \cdot {\rm{P}}({\rm{A}}\mid \bar B) = {\rm{P}}(\bar B) \cdot \frac{{P(A \cap \bar B)}}{{P(\bar B)}} = {\rm{P}}(A \cap \bar B).\)

Vì hai biến cố \({\rm{A}} \cap {\rm{B}}\) và \(A \cap \bar B\) là hai biến cố xung khắc và \(({\rm{A}} \cap {\rm{B}}) \cup (A \cap \bar B)\) = A nên theo công thức xác suất ta có: \({\rm{P}}({\rm{A}}) = {\rm{P}}({\rm{A}} \cap {\rm{B}}) + {\rm{P}}(A \cap \bar B) = {\rm{P}}({\rm{B}}) \cdot {\rm{P}}({\rm{A}}\mid {\rm{B}}) + {\rm{P}}(\bar B) \cdot {\rm{P}}({\rm{A}}\mid \bar B).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP