B. TRẮC NGHIỆM ĐÚNG - SAI. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).
a) Hàm số đã cho đồng biến trên \[\left( { - \infty ; - 1} \right)\] và \(\left( {3; + \infty } \right)\).
b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng \( - 4\).
c) Đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).
d) Phương trình tiếp tuyến của đồ thị hàm số đã cho vuông góc với đường thẳng \(x - 3y - 6 = 0\) đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).
B. TRẮC NGHIỆM ĐÚNG - SAI. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).
a) Hàm số đã cho đồng biến trên \[\left( { - \infty ; - 1} \right)\] và \(\left( {3; + \infty } \right)\).
b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng \( - 4\).
c) Đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).
d) Phương trình tiếp tuyến của đồ thị hàm số đã cho vuông góc với đường thẳng \(x - 3y - 6 = 0\) đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).
Quảng cáo
Trả lời:

Xét hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}} = x + 1 + \frac{1}{{x + 2}}\).
– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 2} \right\}\).
– Ta có \(y' = \frac{{{x^2} + 4x + 3}}{{{{\left( {x + 2} \right)}^2}}}\); \(y' = 0\) khi \(x = - 3\) hoặc \(x = - 1\).
Bảng biến thiên của hàm số như sau:
![a) Hàm số đã cho đồng biến trên \[\left( { - \infty ; - 1} \right)\] và \(\left( {3; + \infty } \right)\). b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng \( - 4\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid12-1756171938.png)
a) Sai. Hàm số đã cho đồng biến trên từng khoảng \(\left( { - \infty ; - 3} \right)\) và \(\left( { - 1; + \infty } \right)\).
b) Sai. Hàm số đã cho đạt cực đại tại \(x = - 3\), ; đạt cực tiểu tại \(x = - 1\), \({y_{CT}} = 1\).
Suy ra .
c) Đúng.Tiệm cận:
+) Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(x = - 2\).
+) Tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng \(y = x + 1\).
Với \(x = 0\) thì \(y = 0 + 1 = 1\), do đó đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).
d) Đúng. Đường thẳng \(x - 3y - 6 = 0\)\( \Leftrightarrow y = \frac{1}{3}x - 2\) có hệ số góc \({k_1} = \frac{1}{3}\). Đường thẳng này vuông góc với tiếp tuyến của đồ thị hàm số đã cho nên tiếp tuyến này có hệ số góc \({k_2} = \frac{{ - 1}}{{{k_1}}} = - 3\).
Khi đó, với \({x_0}\) là hoành độ của tiếp điểm thì \(y'\left( {{x_0}} \right) = \frac{{x_0^2 + 4{x_0} + 2}}{{{{\left( {{x_0} + 2} \right)}^2}}} = - 3\).
Ta tìm được \({x_0} = - \frac{5}{2}\) hoặc \({x_0} = - \frac{3}{2}\).
+) Với \({x_0} = - \frac{5}{2}\), ta có tiếp tuyến: \(y = - 3x - 11\).
+) Với \({x_0} = - \frac{3}{2}\), ta có tiếp tuyến: \(y = - 3x - 3\), tiếp tuyến này đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2 - x}}{{2x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\frac{2}{x} - 1}}{{2 + \frac{1}{x}}} = - \frac{1}{2}\); \(\mathop {\lim }\limits_{x \to - \infty } \frac{{2 - x}}{{2x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\frac{2}{x} - 1}}{{2 + \frac{1}{x}}} = - \frac{1}{2}\).
Nên tiệm cận ngang của đồ thị hàm số \(y = \frac{{2 - x}}{{2x + 1}}\) là \(y = - \frac{1}{2}\). Chọn C.
Lời giải
a) Lượng xăng ban đầu trong bình ban đầu là \(V\left( 0 \right) = 300\left( {{0^2} - {0^3}} \right) + 4,5 = 4,5\)lít.
Ta có \(30\,\,{\rm{s}} = 0,5\,\,{\rm{ph\'u t}}\). Suy ra \(V\left( {0,5} \right) = 300\left( {{{0,5}^2} - {{0,5}^3}} \right) + 4,5 = 42\) lít.
Khi đó số xăng đã mua là \(42 - 4,5 = 37,5\) lít.
Vậy số tiền người mua phải trả là \(37,5 \cdot 21\,000 = 787\,500\) đồng.
b) Xét hàm số \(V'\left( t \right) = 300\left( {2t - 3{t^2}} \right)\) với \(0 \le t \le 0,5\). Ta có \(V''\left( t \right) = 300\left( {2 - 6t} \right)\).
Khi đó \(V''\left( t \right) = 0 \Leftrightarrow 300\left( {2 - 6t} \right) = 0 \Leftrightarrow t = \frac{1}{3} \in \left( {0;0,5} \right)\).
\(V'\left( 0 \right) = 0\); \(V'\left( {\frac{1}{3}} \right) = 100\); \(V'\left( {0,5} \right) = 75\).
Vậy \(\mathop {\max }\limits_{t \in \left[ {0;0,5} \right]} V'\left( t \right) = V'\left( {\frac{1}{3}} \right) = 100\). Suy ra tại thời điểm ở giây thứ \(\frac{1}{3} \cdot 60 = 20\) thì tốc độ tăng thể tích là lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.